
SerDes Toolbox™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SerDes Toolbox™ User's Guide
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 2.0 (Release 2020b)
March 2021 Online only Revised for Version 2.1 (Release 2021a)
September 2021 Online only Revised for Version 2.2 (Release 2021b)
March 2022 Online only Revised for Version 2.3 (Release 2022a)
September 2022 Online only Revised for Version 2.4 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Design and Simulate SerDes System Topics
1

Fundamentals of SerDes Systems . 1-2

Clock and Data Recovery in SerDes System . 1-3
Phase Detector . 1-3
Recovering Clock Signal . 1-6

Analog Channel Loss in SerDes System . 1-14
Loss Model from Channel Loss Metric . 1-14
Loss Model from Impulse Response . 1-14
Introducing Cross Talk . 1-14

Manage Contents of IBIS and AMI files . 1-16
Contents of IBIS File . 1-16
Contents of AMI File . 1-16
Customize AMI Parameters . 1-17
Define Clock Position in Statistical Eye . 1-17
PAMn Capabilities . 1-18
Debug AMI Files in EDA . 1-18

Statistical Analysis in SerDes Systems . 1-19
Init Subsystem Workflow . 1-20
SerDes System Using Init Subsystem . 1-21
PAMn Thresholds . 1-24
Advance Init Options . 1-24
Metrics Used in Statistical Analysis . 1-25

Jitter Analysis in SerDes Systems . 1-26

Linux Version Compatibilities . 1-29

Customize SerDes Systems Topics
2

Customize SerDes System in MATLAB . 2-2

iii

Contents

Create and Customize IBIS-AMI Models Topics
3

SiSoft Link . 3-2

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI
Software . 3-3

Signal Integrity Link . 3-11

Design and Simulate SerDes Systems Examples
4

Find Zeros, Poles, and Gains for CTLE from Transfer Function 4-2

Convert Scattering Parameter to Impulse Response for SerDes System
. 4-21

Globally Adapt Receiver Components Using Pulse Response Metrics to
Improve SerDes Performance . 4-27

Globally Adapt Receiver Components in Time Domain 4-32

Model Clock Recovery Loops in SerDes Toolbox . 4-52

Customize SerDes Systems
5

Customizing SerDes Toolbox Datapath Control Signals 5-2

Customizing Datapath Building Blocks . 5-14

Implement Custom CTLE in SerDes Toolbox PassThrough Block 5-28

Step Response Based CTLE . 5-37

Customize IBIS-AMI Models
6

Managing AMI Parameters . 6-2

Design IBIS-AMI Models to Support Clock Forwarding 6-18

Design IBIS-AMI Models to Support DC Offset . 6-32

iv Contents

Simulate Crosstalk Cancellation in IBIS AMI Receiver Models 6-40

Industry Standard IBIS-AMI Models
7

PCIe4 Transmitter/Receiver IBIS-AMI Model . 7-2

PCIe5 Transmitter/Receiver IBIS-AMI Model . 7-15

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model 7-38

DDR5 Controller Transmitter/Receiver IBIS-AMI Model 7-50

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model 7-61

USB 3.1 Transmitter/Receiver IBIS-AMI Model . 7-70

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training
. 7-79

ADC IBIS-AMI Model Based on COM . 7-111

Architectural 112G PAM4 ADC-Based SerDes Model 7-127

Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver
Model . 7-137

v

Design and Simulate SerDes System
Topics

• “Fundamentals of SerDes Systems” on page 1-2
• “Clock and Data Recovery in SerDes System” on page 1-3
• “Analog Channel Loss in SerDes System” on page 1-14
• “Manage Contents of IBIS and AMI files” on page 1-16
• “Statistical Analysis in SerDes Systems” on page 1-19
• “Jitter Analysis in SerDes Systems” on page 1-26
• “Linux Version Compatibilities” on page 1-29

1

Fundamentals of SerDes Systems
Modern high-speed electronic systems are characterized by increased data speed integrated circuits
(ICs). The input/output performance remains the bottleneck that limits the overall performance of a
high-speed system. Serial data transfer is the most efficient way of communicating large data quickly
between computer chips on printed circuit boards through copper cables and through short, medium,
and long length fiber optics.

Thus, many systems now aggregate and serialize multiple input/output (I/O) signals for transmission
across fiber and copper cables and PCBs at a higher data rate, recovering and de-serializing the
individual signals on the receiving end. These SerDes (Serializer/De-Serializer) implementations
employ additional silicon real estate to perform sophisticated equalization required for reliable signal
transmission at very high data speeds. This approach helps maximize throughput at the system level.

SerDes design is a complex, iterative process that typically starts with a baseline SerDes system that
demonstrates the feasibility of a design approach. This system also establishes budgets for the
different parts of the serial channel and associated transmitter (TX) and receiver (RX) equalization
circuitry. The data that describes the desired behavior of each of the equalization filters in both the
transmitter and the receiver is then back-annotated in the behavioral models with the correlation
with simulations or measurements. The final step is to implement the training algorithms and control
loops that will be executed by the chip during startup and from time to time when the channel needs
to be retrained.

There are six sections of a SerDes system:

• TX equalization — This becomes the IBIS-AMI dll for the transmitter.
• TX AnalogOut — This becomes the analog model of the transmitter. It is part of the IBIS model for

TX, and is typically represented by the I-V and V-T characteristics curves in the .ibs file.
• Channel — This becomes the model of the physical channel, including the TX and RX package

models.
• RX AnalogOut — This becomes the analog model of the receiver. It is part of the IBIS model for

RX, and is typically represented by the I-V and V-T characteristics curves in the .ibs file.
• RX equalization — This becomes the IBIS-AMI dll for the receiver.
• Training algorithms and control loops — These become the on-chip microcode that is executed

inside of the chip during startup and when the channel needs to be retrained.

See Also

More About
• “Design SerDes System and Export IBIS-AMI Model”

1 Design and Simulate SerDes System Topics

1-2

Clock and Data Recovery in SerDes System
In this section...
“Phase Detector” on page 1-3
“Recovering Clock Signal” on page 1-6

High-speed analog SerDes systems use clock and data recovery (CDR) circuitry to extract the proper
time to correctly sample the incoming waveform. The CDR circuitry creates a clock signal that is
aligned to the phase and to some extent the frequency of the transmitted signal. Phase tracking (first
order CDR) is usually accomplished by using a nonlinear bang-bang or Alexander phase detector that
drives a voltage-controlled oscillator (VCO). Frequency tracking (second order CDR) integrates any
remaining phase errors and compensates for gross differences between the transmitter reference
clock and the receiver reference clock. serdes.CDR and serdes.DFECDR use the first-order CDR
algorithm.

Phase Detector
The Alexander or bang-bang phase detector samples the received waveform at the edge and middle
of each symbol. The edge sample (en) and data samples (dn-1 and dn) are processed with some digital
logic to determine if the edge sample, and thus the clock phase, is early or late. The edge sample, en,
and data sample, dn, are separated by half of a symbol time.

Consider the waveform where a data transition has occurred, and both en and dn are below the
decision threshold voltage. The binary values resolved from en and dn match, which indicates the
clock phase is late.

 Clock and Data Recovery in SerDes System

1-3

Similarly, when the binary values resolved from en and dn-1 match, the clock phase is early.

1 Design and Simulate SerDes System Topics

1-4

Representing the binary output of the sampler by ±1, the behavior of the phase detector for NRZ or
PAM4 modulation is summarized here:

dn-1 en dn Action
−1 −1 1 Clock phase is early. Shift phase to the right.
1 1 −1
−1 1 1 Clock phase is late. Shift phase to the left.
1 −1 −1
−1 X −1 No action is necessary.
1 X 1

For PAM3 modulation, the symbol levels are −0.5, 0, and 0.5. The default threshold levels (th) are
±0.25. The modified truth table thus become:

dn-1 en dn Action
−0.5 en > −th 0 late
−0.5 en < −th 0 early
−0.5 en > 0 0.5 late
−0.5 en < 0 0.5 early
0 en > th 0.5 late

 Clock and Data Recovery in SerDes System

1-5

dn-1 en dn Action
0 en < th 0.5 early
0 en > −th −0.5 early
0 en < −th −0.5 late
0.5 en > th 0 early
0.5 en < th 0 late
0.5 en > 0 −0.5 early
0.5 en < 0 −0.5 late

Driving the VCO directly from the phase detector output results in excessive clock jitter. To eliminate
the jitter, the output of the phase detector is lowpass filtered by accumulating it in a vote. When the
accumulated vote exceeds a specific count threshold, the phase of the VCO is incremented or
decremented.

Recovering Clock Signal
Recover the clock signal from a repeating pseudorandom binary sequence (PRBS9) nonreturn to zero
(NRZ) signal. Consider the channel has 4 dB loss, the phase step size is 1

128 , the vote count threshold
is 8, and that there are no phase or reference offsets.

The baseline behavior is shown with the eye diagram and the resulting clock probability distribution
function (PDF). The PDF is very near the center of the eye. The clock phase settles between a value of
0.5703 symbol time and 0.5781 symbol time. The dithering between the two values is a consequence
of the nonlinear bang-bang phase detector and is the source of CDR hunting jitter. To reduce the
magnitude of dithering, reduce the phase step size. To reduce the period of dithering, reduce the vote
count threshold.

1 Design and Simulate SerDes System Topics

1-6

The output of the phase detector is accumulated in the early/late vote count. When the count exceeds
the vote count threshold, the phase is incremented or decremented. To accelerate CDR convergence,
the count threshold starts at 2, and each time the magnitude of the vote exceeds the threshold, the
threshold is incremented until it reaches the maximum count. This figure shows the first 350 symbols
of the early/late count (blue) and the threshold (dashed red line). Internal to the CDR block, the vote
is incremented or decremented, checked against the threshold and then reset if necessary. The
external vote value shown in figure below does not touch the threshold but is evident when the vote is
reset to 0.

 Clock and Data Recovery in SerDes System

1-7

To show the clock converging to a different phase, change the channel loss to 2 dB. The clock phase
now adapts to around 0.35 symbol time.

1 Design and Simulate SerDes System Topics

1-8

Increasing the vote count threshold to 16 results in a larger dithering period.

 Clock and Data Recovery in SerDes System

1-9

Increasing the phase step size to 1
64 increases the dithering magnitude.

1 Design and Simulate SerDes System Topics

1-10

Manually shifting the data sampler location when the equalized eye does not display left/right
symmetry can maximize the eye height. For example, shift the clock phase to the right by 18 of a
symbol time to shift the output clock phase from 0.57 symbol time to 0.7 symbol time.

 Clock and Data Recovery in SerDes System

1-11

You can also inject a small amount of reference clock frequency offset impairment to implement a
more realistic CDR.

1 Design and Simulate SerDes System Topics

1-12

References
[1] Sonntag, J. L. and Stonick, J. "A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s

Binary Links." IEEE Journal of Solid-State Circuits, 2006.

[2] Razavi, B. "Challenges in the design high-speed clock and data recovery circuits." IEEE
Communications Magazine, 2002.

See Also
serdes.CDR | serdes.DFECDR | DFECDR | CDR

 Clock and Data Recovery in SerDes System

1-13

Analog Channel Loss in SerDes System

In this section...
“Loss Model from Channel Loss Metric” on page 1-14
“Loss Model from Impulse Response” on page 1-14
“Introducing Cross Talk” on page 1-14

Limiting factors in high-speed data transmission includes cross talk, attenuation, and reflection noise.
The Analog Channel block and serdes.ChannelLoss System object™ parameterize a channel
model that represents a lossy transmission line typical in high-speed SerDes application. The loss
model is constructed either from a parameterized channel loss model or from an impulse response
from another source.

Loss Model from Channel Loss Metric
A discrete time, band-limited analog impulse response characterizes the serdes.ChannelLoss
System object. It represents the response of a system to an impulse response vector with an impulse
magnitude of 1

dt , where dt is the sample interval.

To calculate the impulse response, serdes.ChannelLoss first calculates the S-parameter
component S21 according to channel loss at frequencies ranging from 0 to fmax, maximum frequency
of interest, where fmax = 1

dt . This is done by determining the loss at the target frequency, and then
linearly extrapolating required channel length to achieve target channel loss. Then transmitter and
receiver termination S-parameter are then calculated according to the equations 93A-17 and 93A-18
from the IEEE 802.3bj-2014 specifications [1].

After calculating S21, the System object adds the negative frequency data points based on the
expected even symmetry of the real components of S21 and the odd symmetry of the imaginary
components of S21 of the frequency response. The impulse response is calculated from the inverse
Fourier transform of S21. Finally, the impulse response is resampled so that the sample interval is dt.

Loss Model from Impulse Response
To construct a loss model from an impulse response vector, input the impulse response vector from
another source. You can also define the impulse sample interval. Changing the symbol time and
number of samples per symbol changes the data rate of the SerDes system.

Introducing Cross Talk
You can include crosstalk in your simulation from the SerDes Designer app, or using the Analog
Channel block in Simulink®. If the parameterized channel loss model is used, you can specify the
strength of the near and far end crosstalk aggressors according to specification standards or you can
specify your own custom integrated crosstalk noise (ICN) levels. If a custom impulse response is
used, then up to 6 additional columns can be used to represent the crosstalk impulse response. For
more information, see Analog Channel and serdes.ChannelLoss.

1 Design and Simulate SerDes System Topics

1-14

References
[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and

Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables."
https://standards.ieee.org/standard/802_3bj-2014.html.

See Also
Analog Channel | serdes.ChannelLoss | SerDes Designer

 Analog Channel Loss in SerDes System

1-15

https://standards.ieee.org/standard/802_3bj-2014.html

Manage Contents of IBIS and AMI files
You can manage the IBIS-AMI parameters by opening the SerDes IBIS-AMI Manager dialog box from
the Configuration block.

Contents of IBIS File
The IBIS tab in the SerDes IBIS-AMI Manager dialog box defines the content of the IBIS file. Set the
parameters used to define the IBIS file in the AnalogOut and AnalogIn blocks in the SerDes
Designer app and in the IBIS tab in the SerDes IBIS-AMI Manager.

From the transmitter side in the AnalogOut block:

• Voltage (V) — Typical value of voltage range in the IBS file.
• R (Ohms) — Slope of the typical pull-up and pull-down IV curves in the IBS file.
• C (pF) — Typical value of the C_comp in the IBS file.

From the receiver side in the AnalogIn block:

• Voltage (V) — Typical value of voltage range in the IBS file.
• R (Ohms) — Slope of the typical ground clamp IV curve in the IBS file.
• C (pF) — Typical value of the C_comp in the IBS file.

You can only enter the typical values for these parameters. You can define the Tx and Rx corner
percentage in the Export tab of the SerDes IBIS-AMI Manager dialog box. The minimum and
maximum values are generated by subtracting or adding to the typical value its fractional corner
percentage.

The performance of an input/output (I/O) buffer is a function of process, voltage, and temperature
(PVT). There are 27 PVT corners. IBIS supports three model corners: Typ, Min, and Max. When
generating the IBIS file, the Voltage (V), R (Ohms), and C (pF) values are used for the Typ corner.

• Min refers to the slow/weak corner. It groups slow process, low voltage, and high temperature.
The voltage and resistance are decreased and the capacitance is increased for the Min corner.

• Max refers to the fast/strong corner. It groups fast process, high voltage, and low temperature.
The voltage and resistance are increased and the capacitance is decreased for the Max corner.

You can also specify the IBIS-AMI model in the Export tab of the SerDes IBIS-AMI Manager dialog
box as single I/O, redriver, or retimer. Selecting these model configurations changes the contents of
the IBIS file.

• If you select I/O as the model configuration, the IBIS model is reconfigured to a single model of
Model Type I/O.

• If you select Retimer or Redriver as the model configuration, the components of the IBIS file is
updated to include the repeater pins.

Contents of AMI File
The AMI - Tx and AMI - Rx tabs in the SerDes IBIS-AMI Manager dialog box define the content of
the AMI file. They contain the required and commonly used reserved AMI parameters. You can also
define the model-specific parameters for the relevant blocks.

1 Design and Simulate SerDes System Topics

1-16

There are five Reserved_Parameters included in every AMI file generated by the SerDes Toolbox:

• AMI_Version — IBIS version supported by the model
• Init_Returns_Impulse — whether the model supports statistical simulation or not
• GetWave_Exists — whether the model supports time-domain simulation or not.
• Max_Init_Aggressors — the number of crosstalk aggressors supported by the model
• Modulation — the modulation scheme of the model.
• Ignore_Bits — the number of bits ignored during time domain analysis.

If you select Retimer or Redriver as the model configuration in the Export tab of the SerDes IBIS-
AMI Manager dialog box, an additional Reserved_Parameter Repeater_Type is added to the AMI -
Rx tab. This parameter specifies the type of the repeater.

Customize AMI Parameters
You can define and modify the parameters of individual transmitter and receiver blocks. From the
Model_Specific parameters, you can add new custom AMI parameters to specific blocks. The new
AMI parameters references in the Simulink model are automatically maintained for you. For more
information, see “Managing AMI Parameters” on page 6-2.

You can also add a new tap structure to the equalizer blocks. These additional taps are included both
in the Simulink model and the exported IBIS-AMI models. The taps enable you to adjust equalization,
especially when you build your custom blocks from scratch.

You can select to hide the Model_Specific AMI parameters and tap structures using the Edit...
button The parameters still work the same way in Simulink models. But they are not written in the
AMI files and does not show up in the AMI_Parameters_Out string. The hidden parameters are
hard-coded to their current values in the DLL files and the end user cannot modify them.

You can also include standard-compliant transmitter and receiver jitter and noise parameters to the
Reserved_Parameter section of the AMI file using the Reserved Parameters... button. Some of
these reserved parameters are only used by the EDA tools. Simulink Coder™ ignores these
parameters:

• Rx_Decision_Time
• Ts4file (and Tx_V, Rx_R)
• Rx_Clock_Recovery_Mean
• Rx_Clock_Recovery_Rj
• Rx_Clock_Recovery_Dj
• Rx_Clock_Recovery_Sj
• Rx_Clock_Recovery_DCD

Define Clock Position in Statistical Eye
You can define the timing of the clock in the statistical eye according to BIRD 205 using the reserved
parameter Rx_Decision_Time. The corresponding Init function code, data structure, and AMI tree
is automatically supported.

To add the Rx_Decision_Time parameter, click the Reserved Parameters... button in the AMI-Rx
tab to open the Add/Remove dialog box. Once you add the parameter, it appears in the AMI tree. A

 Manage Contents of IBIS and AMI files

1-17

model workspace variable is also created You need to refresh the Init function in the receiver after
you modify the Rx_Decision_Time parameter. After refreshing the Init function, the parameter
appears in the Custom User Area.

Note The Rx_Decision_Time parameter is only added in the receiver section.

PAMn Capabilities
The SerDes IBIS-AMI manager supports NRZ, PAM3, PAM4, PAM8, and PAM16 modulation schemes.
If your model previously was created using IBIS pre-7.2 modulation levels, you can switch to IBIS 7.2
parameter Modulation_Levels by editing the Modulation AMI parameter under the
Reserved_Parameter section. Switching to IBIS 7.2 parameter Modulation_Levels requires
refreshing the Init function in the receiver side. The changes are applied both to transmitter and the
receiver side.

Debug AMI Files in EDA
To enable debugging the AMI files in EDA tools, in the AMI-Tx or AMI-Rx tab, click the Reserved
Parameters... button and select DLL_ID parameter. DLL_ID is a standard IBIS-AMI parameter that
appears as a Reserved_Parameter. It also enables the AMI_Debug parameter as a
Model_Specific parameter.

Set Enable value to true to output debug files. You can improve performance by setting Enable
value to false and not output any debug files, but still have the option to turn on debugging in the
EDA tools if necessary. Use Start_Time to define the simulation time at which debug output
generation begins.

Note SerDes Toolbox does not support compilation of AMI_Wrapper.cpp files with non-inlined S-
functions. As a result, you cannot export IBIS-AMI models with non-inlined S-functions. If you have a
Simulink Coder or Embedded Coder® license, you can convert your S-functions to inlined to support
IBIS-AMI model export. For more information, see “Inlining S-Functions” (Simulink Coder).

See Also
Configuration

More About
• “Managing AMI Parameters” on page 6-2

External Websites
• https://ibis.org

1 Design and Simulate SerDes System Topics

1-18

https://ibis.org

Statistical Analysis in SerDes Systems
A SerDes system simulation involves a transmitter (Tx) and a receiver (Rx) connected by a passive
analog channel. There are two distinct phases to a SerDes system simulation: statistical analysis and
time-domain analysis. Statistical analysis (also known as analytical, linear time-invariant, or Init
analysis) is based on impulse responses enabling fast analysis and adaptation of equalization
algorithms. Time-domain analysis (also known as empirical, bit-by-bit or GetWave analysis) is a
waveform-based implementation of equalization algorithms that can optionally include nonlinear
effects.

The reference flow of statistical analysis differs from time-domain analysis. During a statistical
analysis simulation, an impulse response is generated. The impulse response represents the
combined response of the transmitter’s analog output, the channel, and the receiver’s analog front
end. The impulse response of the channel is modified by the transmitter model's statistical functions.
The modified impulse response from the transmitter output is then further modified by the receiver
model's statistical functions. The simulation is then completed using the final modified impulse
response which represents the behavior of both AMI models combined with the analog channel.

During a time-domain simulation, a digital stimulus waveform is passed to the transmitter model's
time-domain function. This modified time-domain waveform is then convolved with the analog
channel impulse response used in the statistical simulation. The output of this convolution is then
passed to the receiver model's time-domain function. The modified output of the receiver becomes the
simulation waveform at the receiver latch.

In SerDes Toolbox, the Init subsystem within both the Tx and Rx blocks uses an Initialize Function
Simulink block. The Initialize Function block contains a MATLAB® function to handle the statistical
analysis of an impulse response vector. The impulse response vector is generated by the Analog
Channel block.

The MATLAB code within the Init subsystems mimics the architecture of Simulink time-domain
simulation by initializing and setting up the library blocks from the SerDes Toolbox that implement
equalization algorithms. Each subsystem then processes the impulse response vector through one or
more System objects representing the corresponding blocks.

 Statistical Analysis in SerDes Systems

1-19

Additionally, an Init subsystem can adapt or optimize the equalization algorithms and then apply the
modified algorithms to the impulse response. The output of an Init subsystem is an adapted impulse
response. If the Init subsystem adapts the equalization algorithms, it can also output the modified
equalization settings as AMI parameters. These modified equalization parameters can also be passed
to the time-domain analysis as an optimal setting or to provide a starting point for faster time-domain
adaptation.

Init Subsystem Workflow
In a Simulink model of a SerDes system, there are two Init subsystems, one on the transmitter side
(Tx block) and one on the receiver side (Rx block). During statistical analysis, the impulse response of
the analog channel is first equalized by the Init subsystem inside the Tx block based on the System
object properties. The modified impulse response is then fed as an input to the Rx block. The Init
system inside the Rx block further equalizes the impulse response and produces the final output.

The System objects corresponding to the Tx and Rx blocks modify the impulse response in the same
order as they were received. If there are multiple self-adapting System objects in a Tx or Rx block,
each System object finds the best setting for the impulse response and modifies it before sending it to
the next System object.

The final equalized impulse response is used to derive the pulse response, statistical eye, and the
waveforms.

1 Design and Simulate SerDes System Topics

1-20

SerDes System Using Init Subsystem
To understand how an Init subsystem handles statistical analysis in a SerDes system, create a SerDes
system using the SerDes Designer app. The SerDes system contains an FFE block on the Tx side
and CTLE and DFECDR blocks on the Rx side. Use the default settings for each block.

 Statistical Analysis in SerDes Systems

1-21

Access Init Code

Export the SerDes system to a Simulink model. In Simulink, double-click the Tx block to open the Init
block. Then double-click the Init block to open the Block Parameters dialog box. Click the Show Init
button to open the code pertaining to the Init function of the transmitter.

Reshape Impulse Response and Instantiate Tx System object

The Init function first reshapes the impulse response vector of the analog channel into a 2-D matrix.
The first column in the 2-D matrix represents the analog channel impulse response (victim). The
subsequent columns (if any are present) represent the crosstalk (aggressors).

%% Impulse response formatting
% Size ImpulseOut by setting it equal to ImpulseIn
ImpulseOut = ImpulseIn;
% Reshape ImpulseIn vector into a 2D matrix using RowSize and Aggressors called LocalImpulse
LocalImpulse = zeros(RowSize,Aggressors+1);
AggressorPosition = 1;
for RowPosition = 1:RowSize:RowSize*(Aggressors+1)
 LocalImpulse(:,AggressorPosition) = ImpulseIn(RowPosition:RowSize-1+RowPosition)';
 AggressorPosition = AggressorPosition+1;
end

Then the Init function initializes the system objects that represent the blocks on the Tx side and sets
up the simulation and AMI parameters and the block properties. In this SerDes system, there is only
one block on the Tx side, FFE.

%% Instantiate and setup system objects
% Create instance of serdes.FFE for FFE
FFEInit = serdes.FFE('WaveType', 'Impulse');
% Setup simulation parameters
FFEInit.SymbolTime = SymbolTime;
FFEInit.SampleInterval = SampleInterval;
% Setup FFE In and InOut AMI parameters
FFEInit.Mode = FFEParameter.Mode;
FFEInit.TapWeights = FFEParameter.TapWeights;
% Setup FFE block properties
FFEInit.Normalize = true;

Tx Impulse Response Processing

The channel impulse response is then processed by the System object on the Tx side.

%% Impulse response processing via system objects
% Return impulse response for serdes.FFE instance
LocalImpulse = FFEInit(LocalImpulse);

The modified impulse response in 2-D matrix form is reshaped back into an impulse response vector
and sent to the Rx side for further equalization.

%% Impulse response reformating
% Reshape LocalImpulse matrix into a vector using RowSize and Aggressors
ImpulseOut(1:RowSize*(Aggressors+1)) = LocalImpulse;

Reshape Impulse Response and Instantiate Rx System object

Similarly, if you look at the Rx Init code, you can see that the Rx Init function first reshapes the output
of the Tx Init function into a 2-D matrix.

1 Design and Simulate SerDes System Topics

1-22

Then the Init function initializes the System objects that represent the blocks on the Rx side and sets
up the simulation and AMI parameters and the block properties. In this case, there are two blocks on
the Rx side, CTLE and DFECDR.

%% Instantiate and setup system objects
% Create instance of serdes.CTLE for CTLE
CTLEInit = serdes.CTLE('WaveType', 'Impulse');
% Setup simulation parameters
CTLEInit.SymbolTime = SymbolTime;
CTLEInit.SampleInterval = SampleInterval;
% Setup CTLE In and InOut AMI parameters
CTLEInit.Mode = CTLEParameter.Mode;
CTLEInit.ConfigSelect = CTLEParameter.ConfigSelect;
% Setup CTLE block properties
CTLEInit.Specification = 'DC Gain and Peaking Gain';
CTLEInit.DCGain = [0 -1 -2 -3 -4 -5 -6 -7 -8];
CTLEInit.ACGain = 0;
CTLEInit.PeakingGain = [0 1 2 3 4 5 6 7 8];
CTLEInit.PeakingFrequency = 5000000000;
CTLEInit.GPZ = [0 -23771428571 -10492857142 -13092857142;-1 -17603571428 -7914982142 -13344642857;...
-2 -17935714285 -6845464285 -13596428571;-3 -15321428571 -5574642857 -13848214285;...
-4 -15600000000 -4960100000 -14100000000;-5 -15878571428 -4435821428 -14351785714;...
-6 -16157142857 -3981285714 -14603571428;-7 -16435714285 -3581089285 -14855357142;...
-8 -16714285714 -3227142857 -15107142857];
% Create instance of serdes.DFECDR for DFECDR
DFECDRInit = serdes.DFECDR('WaveType', 'Impulse');
% Setup simulation parameters
DFECDRInit.SymbolTime = SymbolTime;
DFECDRInit.SampleInterval = SampleInterval;
DFECDRInit.Modulation = Modulation;
% Setup DFECDR In and InOut AMI parameters
DFECDRInit.ReferenceOffset = DFECDRParameter.ReferenceOffset;
DFECDRInit.PhaseOffset = DFECDRParameter.PhaseOffset;
DFECDRInit.Mode = DFECDRParameter.Mode;
DFECDRInit.TapWeights = DFECDRParameter.TapWeights;
% Setup DFECDR block properties
DFECDRInit.EqualizationGain = 9.6e-05;
DFECDRInit.EqualizationStep = 1e-06;
DFECDRInit.MinimumTap = -1;
DFECDRInit.MaximumTap = 1;
DFECDRInit.Count = 16;
DFECDRInit.ClockStep = 0.0078;
DFECDRInit.Sensitivity = 0;

Rx Impulse Response Processing

The impulse response that was previously modified by the System objects on the Tx side is then
further modified by the System objects on the Rx side.

%% Impulse response processing via system objects
% Return impulse response and any Out or InOut AMI parameters for serdes.CTLE instance
[LocalImpulse, CTLEConfigSelect] = CTLEInit(LocalImpulse);
% Return impulse response and any Out or InOut AMI parameters for serdes.DFECDR instance
[LocalImpulse, DFECDRTapWeights, DFECDRPhase, ~, ~] = DFECDRInit(LocalImpulse);

The final equalized impulse response in 2-D matrix form is reshaped back into an impulse response
vector.

 Statistical Analysis in SerDes Systems

1-23

Custom User Code Area

Each Init function also contains a section, Custom user code area, where you can customize your own
code.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

For more information on how you can use the Custom user code area, see “Customizing Datapath
Building Blocks” on page 5-14 and “Implement Custom CTLE in SerDes Toolbox PassThrough Block”
on page 5-28.

The code generation of Init function (Refresh Init) can support one or multiple System objects when
using the custom PassThrough block. If multiple system objects are present, they must be in series.
The first input port must have a waveform as the input. If any waveform output is present, it must be
the first output port.

PAMn Thresholds
If you are using a SerDes Toolbox datapath library block, PAMn thresholds in the Init function are
maintained for you automatically. If you are using a custom configuration using a PassThrough, the
code generation of the Init function finds the Data Store Write blocks that reference the PAMn
threshold signals (PAMn_UpperThreshold, PAMn_CenterThreshold, PAMn_LowerThreshold)
and determines connectivities. The connectivities that are supported are:

• Direct connection to System object
• Connection to System object through bus selector
• Connection to System object through Gain block
• Direct connection to Constant block

If the Init code generation cannot find a supported topology, it applies the default PAM4 thresholds.

Advance Init Options
External Init

You can export the Init code to an external MATLAB function, customize it, and then use the
customized Init function for rapid analysis. To export the Init code, select the External Init option in
the block parameters dialog box of either the Tx or Rx Init block, then click the Refresh Init button.
This copies the contents of each of the Init MATLAB function blocks to txInit.m and rxInit.m files
and links these functions back to the Simulink model. It also creates a runExternalInit.m file that
runs these external Init files in MATLAB.

Once you have customized the Init code and you want to reintegrate the Init function back into the
Simulink model, you can disable the External Init option and click the Refresh Init button again.
This copies the contents of the Init function into the default Init files and deletes the external Init
files.

Disable Default Impulse Response Processing

You can comment out the default impulse processing section of the Init code. This option comments
out the code preforming the impulse response processing as shown in the “Tx Impulse Response

1 Design and Simulate SerDes System Topics

1-24

Processing” on page 1-22 and “Rx Impulse Response Processing” on page 1-23 sections. You can then
customize the impulse response processing required for your system design in the “Custom User
Code Area” on page 1-24.

Metrics Used in Statistical Analysis
Performance Metric Description
Eye Height (V) Eye height at the center of the BER contour
Eye Width (ps) Eye width of the BER contour
Eye Area (V*ps) Area inside the BER contour eye
Eye Linearity Measure of the variance of amplitude separation among different

levels of PAM3, PAM4, PAM8, or PAM16, given by the equation:
Linearity = Minimum amplitude of the different eye levels

Maximum amplitude of the different eye levels
COM Channel operating margin, given by the equation:

COM = 20log10
Mean eye height

Mean eye height ‐ Inner eye height
VEC Vertical eye closure, given by the equation: VEC = Mean eye height

Inner eye height

See Also

More About
• “Customizing Datapath Building Blocks” on page 5-14
• “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
• “Managing AMI Parameters” on page 6-2
• “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

 Statistical Analysis in SerDes Systems

1-25

Jitter Analysis in SerDes Systems
Jitter is an important part of SerDes systems specification. You can include jitter parameters from the
SerDes Designer app and from the Simulink model. Including jitter impairment in your link and
equalization design helps calculate the required eye margins. You can also perform trade-off between
different equalization schemes based on total jitter contribution. You can export the jitter values to
IBIS-AMI models.

The most common types of jitter are:

Jitter Type Description
DCD (duty cycle distortion) Impairment from half and quarter rate clock

misalignment. Also known as even-odd jitter.

Duty cycle distortion is defined as the difference
in symbol duration between one symbol and the
next. The transmitter and receiver duty cycle
distortions are half of the clock duty cycle
distortion.

DJ (deterministic jitter) Usually modeled as bounded uniform jitter. Also
known as uncorrelated bounded high probability
jitter.

Deterministic jitter is defined as half of the peak-
to-peak variation.

RJ (random jitter) Gaussian process that models unbounded jitter
events. Also known as uncorrelated unbounded
Gaussian jitter.

Random jitter is defined as the standard deviation
of a white Gaussian phase noise process.

SJ (sinusoidal jitter) Bounded periodic jitter that typically comes from
power supply voltage variation.

Sinusoidal jitter is defined as half of the peak-to-
peak variation of sinusoidal phase noise
amplitude.

Noise Random voltage noise. IBIS-AMI 7.0 defines
Gaussian noise and uniform noise impairments.
Also known as additive white Gaussian noise
(AWGN).

The expected simulation results vary depending on the type of jitter, injection site (transmitter or
receiver), and analysis domain (statistical or time-domain). The SerDes Designer app only supports
statistical or impulse-based analysis. To perform time-domain analysis, you must export the model to
Simulink. The different types of jitter are injected into transmitter and receiver sites according to the
IBIS-AMI specifications:

1 Design and Simulate SerDes System Topics

1-26

Normal Mode Statistical Analysis Time Domain Analysis
Transmitter jitter Convolved with eye Injected in stimulus
Receiver jitter Convolved with clock PDF

(probability density function)
Injected in clock times

Clock recovery jitter Convolved with clock PDF Injected in clock times if
receiver does not return clock
times

 Jitter Analysis in SerDes Systems

1-27

See Also
SerDes Designer

External Websites
• https://ibis.org/ver7.0/ver7_0.pdf

1 Design and Simulate SerDes System Topics

1-28

https://ibis.org/ver7.0/ver7_0.pdf

Linux Version Compatibilities
When generating a shared object (.so) file on Linux® platform, MATLAB uses the GLIBC and
GLIBCXX (GLIBC++) library versions provided by the operating system (OS). This means that when
running these models on an equivalent OS from another vendor, you may encounter compatibility
issues which prevent the model from running.

Supported Library Versions for Different OS

Linux OS GLIBC Library Version GLIBCXX Library
Version

GCC Library Version

Debian® 9 2.24-11 3.4.22 6.3
Debian 10 2.28-10 3.4.25 8.3
Red Hat® 6.6 2.12 3.4.13 4.4.7
Red Hat 7.7 2.17 3.4.19 4.8.5
SUSE® 11.4 2.11.3 — 4.3.4
SUSE 12.3 2.19 — 4.8
SUSE 12.4 2.22 — 4.8

When generating a .so file, the compiler only uses the latest GLIBC/GLIBCXX version for each
individual library function. So while the latest Debian 10 GLIBC version is 2.28, SerDes Toolbox only
uses a sub-set of the GLIBC libraries. Depending on the blocks being used, it’s possible that only
v2.12 is required.

For example, a generated .so file for a random Rx AMI model on Debian 10 requires these libraries:

• 0x08922974 0x00 05 GLIBCXX_3.4
• 0x06969194 0x00 04 GLIBC_2.14
• 0x09691a75 0x00 03 GLIBC_2.2.5
• 0x09691a75 0x00 02 GLIBC_2.2.5

This shared object can run on any system with GLIBC v2.14 or later and GLIBCXX v3.4 or later. This
means this shared object can run on Red Hat 7.7, but not on Red Hat 6.6.

Note This only applies to Linux shared objects. Windows® only requires the Universal C Runtime
libraries to be compatible with ALL GLIBC/GLIBCXX versions.

A simple workaround to generate shared objects on an earlier Linux version than what is officially
supported in MATLAB is to export the .so file on a fully supported platform, then manually run the
build on an earlier version. To do this:

• Go to the transmitter or receiver build directory, denoted by Tx_ert_rtw and Rx_ert_rtw,
respectively.

• From the command line, type the following command:

• make –f Tx.mk
• make –f Rx.mk

 Linux Version Compatibilities

1-29

The generated shared objects reside one directory above the build directory (../Tx.so for
transmitter and ../Rx.so for receiver.)

• Copy the .so file to the full name used by SerDes Toolbox.

Note Manual build of the shared object requires a Simulink Coder or Embedded Coder license.

For a list of supported Linux versions, see Previous Releases: System Requirements and Supported
Compilers.

See Also

External Websites
• Windows 10 Universal C Runtime

1 Design and Simulate SerDes System Topics

1-30

https://www.mathworks.com/support/requirements/previous-releases.html
https://www.mathworks.com/support/requirements/previous-releases.html
https://www.microsoft.com/download/details.aspx?id=48234

Customize SerDes Systems Topics

2

Customize SerDes System in MATLAB
Open the SerDes Designer app. In the CONFIGURATION tab of the app toolstrip, set Symbol
Time (ps) to 125 and Target BER to 1e-12.

In a new blank canvas, add an FFE block to the Tx side. Add an AGC, a CTLE and a DFECDR block to
the Rx side.

Select the channel block. Set Channel loss (dB) to 13.

From the EXPORT tab of the app toolstrip, select Generate MATLAB code for SerDes System. A
MATLAB script open that represents the command line interface to the SerDes system.

The MATLAB script contains the code to generate the transmitter and receiver building blocks and
analog models. It also contains the channel information and SerDes system configuration. The script
exposes every parameter that is part of the SerDes system. You can modify the parameters to further
explore the SerDes system.

For example, to see the effect of Channel loss on the SerDes system, scroll down to the section of
the MATLAB script that says % Build ChannelData. Replace the default code section with the
following code:

% Build ChannelData:
channelLoss = 5;
channel = ChannelData(...
 'ChannelLossdB',channelLoss, ...
 'ChannelLossFreq',5000000000, ...
 'ChannelDifferentialImpedance',100);

Save the change and run the script. Keep changing the value of channelLoss to see the effect of
changing channel loss.

The eye diagram when the Channel loss is set to 5 dB:

2 Customize SerDes Systems Topics

2-2

The eye diagram when the Channel loss is set to 16 dB:

 Customize SerDes System in MATLAB

2-3

After you finalize the SerDes system with your desired Channel Loss, you can export the MATLAB
script of the SerDes system as a Simulink model. From the Simulink canvas, you can perform further
time-domain analysis, or export the system to a AMI model.

See Also
SerDes Designer | serdes.ChannelLoss | FFE | AGC | DFECDR | CTLE

2 Customize SerDes Systems Topics

2-4

Create and Customize IBIS-AMI Models
Topics

• “SiSoft Link” on page 3-2
• “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-3
• “Signal Integrity Link” on page 3-11

3

SiSoft Link

Note The SiSoft Link app is not recommended. Use “Signal Integrity Link” on page 3-11 instead.

The SiSoft Link app is used to test the SerDes models developed in Simulink using SerDes Toolbox in
SiSoft Quantum Channel Designer (QCD) and Quantum Signal Integrity (QSI) software. You can
transfer the data required to reproduce a QCD or QSI test case back to Simulink® for debugging and
refinement. You need SiSoft 2018.07-SP4 or later software.

Using the SiSoft Link app, you can:

• Create a QCD project.
• Create a QSI project.
• Import QCD or QSI simulation data into Simulink.
• Update QCD or QSI with new data from Simulink.

To test the SerDes model in QSI or QCD software, first download the SerDes Toolbox Interface for
SiSoft Quantum Channel Designer and QSI Software from the Add-On Explorer. For more information
on downloading add-ons, see “Get and Manage Add-Ons”.

To access the SiSoft link app:

• From the Apps tab in the MATLAB toolstrip, click on SiSoft Link app icon.
• In the MATLAB command prompt, enter sisoftLink.

See Also

More About
• “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-

3

External Websites
• https://sisoft.com

3 Create and Customize IBIS-AMI Models Topics

3-2

https://sisoft.com

SerDes Toolbox Interface for SiSoft Quantum Channel Designer
and QSI Software

This example shows how to use SerDes Toolbox Interface for SiSoft Quantum Channel Designer and
QSI Software support package to test IBIS-AMI SerDes models developed in Simulink using SerDes
Toolbox, in SiSoft Quantum Channel Designer (QCD) or Quantum Signal Integrity (QSI) software. You
can transfer the data required to reproduce a QCD or QSI test case back to Simulink for debugging
and refinement. You need SiSoft 2018.07-SP4 or later software to run this example. You must also
have installed the SiSoft Link app provided with the support package.

Note SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software is not
recommended. Use “Signal Integrity Link” on page 3-11 instead.

SerDes Development Flow

SerDes model development begins with the SerDes Designer app. The app exports a Simulink model
with transmitter (Tx) and receiver (Rx) SerDes models and a testbench to simulate and further
develop the SerDes designs. Test the models in QCD or QSI to verify proper IBIS-AMI model
operation in a target EDA tool. Due to the high performance of IBIS-AMI executable models, run
many simulations to verify the full range of model capabilities, testing with all possible AMI
parameters and a variety of stimuli and interconnect channels. Replicate the simulation cases
warranting closer inspection in Simulink to reproduce and debug the test. Repeat this cycle as many
times as needed, updating the QCD/QSI project and Simulink model.

Create SerDes Toolbox System Model

Open the SerDes Designer app from the Apps toolstrip. Use the app to quickly prototype and
statistically analyze a SerDes system with a Tx and an Rx.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

3-3

Add blocks from the Blocks gallery to the Tx and Rx sides. If you change the block parameters, the
statistical eye display shows the performance changes. Click on Export SerDes System to Simulink
from the Export dropdown menu to create a Simulink model for the system.

Prepare SerDes Simulink Model for QCD/QSI

The SiSoft QCD and QSI software requires IBIS models to simulate the Tx and Rx of your system. Use
the “Open SerDes IBIS-AMI Manager” button in the Configuration block to produce the IBIS files. In
the Export tab of the SerDes IBIS-AMI Manager dialog box choose a target directory and click the
Export button to create the set of IBIS files.

3 Create and Customize IBIS-AMI Models Topics

3-4

Create QCD Project

Click the SiSoft Link icon from the Apps tab in the MATLAB toolstrip to open the SiSoft Link
app.

If your SerDes system model is open in Simulink, it is listed in the Simulink Model dropdown menu
in the SiSoft Link app. Click the Refresh button if your model is not listed. Set the QCD/QSI project
dropdown menu to New QCD project (create) and click Create QCD. If there are unresolved
issues regarding the selected Simulink model, Create QCD button remains disabled.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

3-5

Choose a folder in which the QCD project resides and a name for the project folder. The folder path
and project name must not have spaces. If you have not yet used SiSoft Link to create a project, the
system asks you to locate the folder containing your SiSoft software. A report window appears and
QCD opens executing a script produced by SiSoft Link. When script execution finishes, the QCD
project interface is renamed after your SerDes system model, with a single sheet sheet1.

3 Create and Customize IBIS-AMI Models Topics

3-6

The following data are copied from Simulink to QCD:

• The QCD interface has the same name as the Simulink model.
• QCD has one sheet, sheet1.
• All IBIS files is copied into the QCD project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the QCD solution space.
• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.

Create QSI Project

To create a QSI project, set the QCD/QSI project dropdown menu to New QSI project (create)
and click the Create QSI button. The process is otherwise similar to that for QCD. Typically, IBIS-
AMI models are used in QSI for analysis of single-ended DDR4/5 DQS signals with equalization. If
that is the case, double click the Configuration block in the Simulink model to open it, and set
Signaling to Single-ended before creating the QSI project.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

3-7

For QSI the following simulation parameters are set:

• The QSI interface has the same name as the Simulink model.
• QSI has one sheet, sheet1.
• All IBIS files is copied into the QSI project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the QSI solution space.
• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.
• The Tx rise_time is copied from the typical corner value in the IBIS file.
• Time_Domain_Stop is set to Ignore_Bits + 20,000 UI.
• Record_Bits is set to 100 and Record_Start is set accordingly.

Import QCD or QSI Simulation Data into Simulink

After simulating in QCD or QSI, you can import data to reproduce a simulation in Simulink. You must
select the project in the QCD/QSI project dropdown menu. Click the Browse... button to choose a
desired QCD or QSI project if it is not listed in the QCD/QSI project dropdown menu.

3 Create and Customize IBIS-AMI Models Topics

3-8

The following data are copied from QCD/QSI to Simulink, as enabled by the Import section
checkboxes:

• All Tx and Rx model parameter values from the selected simulation are set in corresponding
blocks in the Simulink model.

• Modulation, SymbolTime, and SampleInterval are set in the Configuration block.
• The time domain stimulus pattern is set in the Stimulus block, even if only statistical simulations

are run in QCD/QSI.
• The channel impulse response from QCD/QSI is set in the Analog Channel block.

A report is generated giving the details of the import.

Update QCD or QSI with New Data from Simulink

To support iterative development, selectively update a QCD or QSI project with data from Simulink.
When a QCD or QSI project path is selected in QCD/QSI project dropdown menu, the Create QCD
(or Create QSI) button becomes Update QCD (or Update QSI). The checkboxes above the button
are enabled to choose the data to be updated. If Update .ibs file is checked, the checkboxes for .ami
files and .dll/.so files are forced on, since importing the .ibis file in QCD or QSI always imports the
other files along with it.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

3-9

Clicking Update QCD (or Update QSI) runs the QCD (or QSI) to open the project and makes the
changes. To avoid conflicts, you must close the project before updating it.

See Also
SerDes Designer | Analog Channel | Stimulus | Configuration

More About
• “SiSoft Link” on page 3-2

External Websites
• https://sisoft.com

3 Create and Customize IBIS-AMI Models Topics

3-10

https://sisoft.com

Signal Integrity Link
This example shows how to test the IBIS-AMI SerDes models developed in SerDes Toolbox using the
Signal Integrity Toolbox™. You need a license to Signal Integrity Toolbox.

SerDes Development Flow

SerDes model development begins with the SerDes Designer app. The app exports a Simulink model
with transmitter (Tx) and receiver (Rx) SerDes models and a testbench to simulate and further
develop the SerDes designs. Test the models in the Signal Integrity Toolbox to verify proper IBIS-AMI
model operation in a target EDA tool. Due to the high performance of IBIS-AMI executable models,
run many simulations to verify the full range of model capabilities, testing with all possible AMI
parameters and a variety of stimuli and interconnect channels. Replicate the simulation cases
warranting closer inspection in Simulink to reproduce and debug the test. Repeat this cycle as many
times as needed, updating the .qcd/.edk project files and Simulink model.

Create SerDes Toolbox System Model

Open the SerDes Designer app from the Apps toolstrip. Use the app to quickly prototype and
statistically analyze a SerDes system with a Tx and an Rx.

Add blocks from the Blocks gallery to the Tx and Rx sides. If you change the block parameters, the
statistical eye display shows the performance changes. Click on Export SerDes System to Simulink
from the Export dropdown menu to create a Simulink model for the system.

 Signal Integrity Link

3-11

Prepare SerDes Simulink Model for Signal Integrity Toolbox

The Signal Integrity Toolbox requires IBIS models to simulate the Tx and Rx of your system. Use the
“Open SerDes IBIS-AMI Manager” button in the Configuration block to produce the IBIS files. In the
Export tab of the SerDes IBIS-AMI Manager dialog box choose a target directory and click the
Export button to create the set of IBIS files.

Serial Link Project

Click the “Open Signal Integrity Link” button in the Configuration block. In the newly opened dialog
box, select New serial link project from the dropdown menu of Link design project
parameter.

3 Create and Customize IBIS-AMI Models Topics

3-12

Choose a project name and destination folder. The folder path and project name must not have
spaces. A report window appears and the Serial Link Designer app opens to create serial link
project from SerDes Toolbox model.

The following data are copied from Simulink to Serial Link Designer:

• The Serial Link Designer interface has the same name as the Simulink model.
• Serial Link Designer has one sheet, sheet1.
• All IBIS files is copied into the serial link project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the Serial Link Designer solution

space.
• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.

Once you create the serial link project, you can refresh the Signal Integrity Link to see your project
from the Link design project parameter dropdown menu. You can make updates to existing project
or import a new project from a simulation of an already simulated project.

Parallel Link Project

Click the “Open Signal Integrity Link” button in the Configuration block. In the newly opened dialog
box, select New parallel link project from the dropdown menu of Link design project
parameter.

 Signal Integrity Link

3-13

Choose a project name and destination folder. The folder path and project name must not have
spaces. A report window appears and the Parallel Link Designer app opens to create parallel link
project from SerDes Toolbox model.

The following data are copied from Simulink to Parallel Link Designer:

• The Parallel Link Designer interface has the same name as the Simulink model.
• Parallel Link Designer has one sheet, sheet1.
• All IBIS files is copied into the parallel link project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the Parallel Link Designer solution

space.
• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.

Once you create the parallel link project, you can refresh the Signal Integrity Link to see your project
from the Link design project parameter dropdown menu. You can make updates to existing project
or import a new project from a simulation of an already simulated project.

See Also
SerDes Designer | Analog Channel | Stimulus | Configuration

3 Create and Customize IBIS-AMI Models Topics

3-14

Design and Simulate SerDes Systems
Examples

• “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2
• “Convert Scattering Parameter to Impulse Response for SerDes System” on page 4-21
• “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-27
• “Globally Adapt Receiver Components in Time Domain” on page 4-32
• “Model Clock Recovery Loops in SerDes Toolbox” on page 4-52

4

Find Zeros, Poles, and Gains for CTLE from Transfer Function

This example shows how to use the CTLE Fitter app to configure a CTLE block from SerDes
Toolbox™ in the SerDes Designer app or in Simulink®. You can use the CTLE Fitter app to fit zeros,
poles, and gains from a transfer function to create a GPZ Matrix and then export to your workspace.
The CTLE Fitter app finds the GPZ Matrix by performing a fit comparison to a transfer function
using the rational (RF Toolbox) function from RF Toolbox™.

Using CTLE Fitter App

You can open the CTLE Fitter app from SerDes Toolbox using any of the three workflows:

• From the CTLE block in the SerDes Designer app.
• From the CTLE block in the Simulink model.
• From the MATLAB® command window in the standalone mode.

Configure CTLE Block in SerDes Designer App

This workflow creates a variable representing a GPZ Matrix in the base workspace that is
referenced by the CTLE block GPZ properties field in the SerDes Designer App. The steps are:

• Add a CTLE block and click the button Launch CTLE Fitter App.
• Import a CTLE frequency response. There can also be multiple responses in your data file.
• Adjust preprocess options for your transfer function data.
• Configure parameters of the rational function from RF Toolbox to optimize the fit to the transfer

function.
• Visualize the fit response within the CTLE Fitter app using plots provided for magnitude response

and pulse response.
• Close the CTLE Fitter app and continue with your session in the SerDes Designer app.

Simulink SerDes Model with CTLE block

This workflow creates a variable representing a GPZ Matrix in the model workspace and references
this in the CTLE block mask GPZ field. The steps are:

• Open the CTLE block mask and click the button Launch CTLE Fitter App.
• Import a CTLE frequency response.
• Adjust preprocess options for your transfer function data.
• Configure parameters of the rational function from RF Toolbox to optimize the fit to the transfer

function.
• Visualize the fit response within the CTLE Fitter app using plots provided for magnitude response

and pulse response.
• Close the CTLE Fitter app and continue with your session in Simulink.

Standalone Mode

This workflow creates a variable in the base workspace representing a GPZ Matrix. The steps are:

• Launch the app with the MATLAB command ctlefitter.

4 Design and Simulate SerDes Systems Examples

4-2

• Import a CTLE frequency response.
• Adjust preprocess options for your transfer function data.
• Configure parameters of the rational function from RF Toolbox to optimize the fit to the transfer

function.
• Visualize the fit response within the CTLE Fitter app using plots provided for magnitude response

and pulse response.
• You have the option to both export a script and save a GPZ Matrix to the base workspace.
• Close the CTLE Fitter app and continue with your session in MATLAB

Configure CTLE Block in the SerDes Designer App

Launch the SerDes Designer app. Place a CTLE block after the analog model of the receiver. Then in
the Block Parameters section, you can click on the button to launch the CTLE Fitter App.

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-3

Import One or More CTLE Frequency Responses

The app will open with some default values shown. Follow these steps to import a file containing one
or more CTLE frequency responses:

• Click on the dropdown menu "Import CTLE frequency response from" and select the "CSV" option
• Click the Browse button to open a .csv file containing a transfer function. Note: You can use the
file attached to this example "CTLEdefault1RealImag.csv" to explore the features of the
ctlefitter app. In the screenshots below, this file has been placed in the folder "D:\data" but
may be in a different location on your system.

• You will see the app loads the file and automatically updates the figure shown on the Plot tab:

4 Design and Simulate SerDes Systems Examples

4-4

Adjust Preprocess Options

In the app, you can see many Preprocess Options are available. For example it is possible to
truncate the data set from the transfer function used by the Fit. In the screenshot below you can see
this is set to a cutoff frequency of 13 GHz:

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-5

You can also adjust:

• Linearly resample with step size in MHz
• Truncate response below a specified frequency in GHz
• Truncate response above a specified frequency in GHz
• Remove delay in picoseconds

Configure Rational Fitting Parameters

You can configure the way the MATLAB function rational determines a fit by adjusting the
following:

• Error tolerance (dB)
• Maximum number of poles
• Use common poles for whole set
• Enable or disable "tends to zero"

These parameters are explained in the documentation for the MATLAB function rational, which is
part of the RF Toolbox.

4 Design and Simulate SerDes Systems Examples

4-6

Report on Rational Fit Results

You can view the statistical parameters of the fit reported by the MATLAB function rational on the
"Report" tab:

Pulse Response

You can view the pulse response on the Pulse Response tab:

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-7

Export a GPZ Matrix for CTLE Block

You can export the GPZ Matrix to the Workspace by clicking on the button "Save GPZ to
Workspace."

Note: If you have previously exported a GPZ Matrix, the name will automatically increment. For
example, gpz01 is created in the figure below, but if gpz01 already exists in the workspace it would
be automatically named gpz02 and added to your workspace.

4 Design and Simulate SerDes Systems Examples

4-8

Export Script from CTLE Fitter App to Base Workspace

You can also export a script from the ctlefitter app to the base workspace by clicking on the
button "Export to Script" and you can see example output below.

Note: The script contents you see may differ from the example below- depending on the data file
being analyzed and your specific CTLE configuration options.

%Read in file:
fn = 'CTLEdefault1RealImag.csv';
[f,H]=ctlefit.readcsv(fn);

SymbolTime = 1e-10;

%Initialize ctleit object
obj = ctlefit(...
 'f',f,...
 'H',H,...
 'SampleInterval',7.8125e-13,...
 'MaxNumberOfPoles',2,...
 'ErrorTolerance',-40,...
 'TendsToZero',1,...
 'UseCommonPoles',0,...
 'PaddedPole',1e+11);

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-9

%Preprocess transfer function waveform
df = 1e+07;
%resample(obj,df);
fcut1 = 5e+08;
%truncateBelow(obj,fcut1);
fcut2 = 1.3e+10;
truncateAbove(obj,fcut2);
delay = 2.5e-12;
%removeDelay(obj,delay);

%Get GPZ matrix
gpz = obj.GPZ;

%Visualize and create report
%TFView (Transfer function view) can be 'dB', 'Phase', 'Real/Imag',
%'Phase Delay', 'Group Delay'.
TFView = 'dB';
%ConfigSelect (CTLE Configuration Select) can be - 'All', 'Worst fit', 0 to
%N-1, where N is the number of configurations.
ConfigSelect = 'All';
%AxisStyle can be 'semilogx', 'plot', 'semilogy' or 'loglog'.
AxisStyle = 'semilogx';
figure,
plot(obj,TFView,ConfigSelect,AxisStyle)

4 Design and Simulate SerDes Systems Examples

4-10

figure,
plotPulse(obj,ConfigSelect,SymbolTime)

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-11

figure,
plotError(obj,ConfigSelect)

4 Design and Simulate SerDes Systems Examples

4-12

figure,
plotFitMetric(obj)

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-13

figure,
plotPoleZero(obj,ConfigSelect,SymbolTime)

4 Design and Simulate SerDes Systems Examples

4-14

report(obj,'All');

15-Jul-2022 12:36:23.11
CTLE with 1 Configurations
Fit response with a maximum of 2 poles

For ConfigSelect = 0
Fit error = -35.361 dB
Gain: -7.96275 V/V or 18.0213 dB
Zeros:
 -1.09021 GHz = | -1.09021 + 0i |*1e9
Poles:
 -5.31435 GHz = | -5.2918 + 0.489137i |*1e9
 -5.31435 GHz = | -5.2918 + -0.489137i |*1e9

Simulink SerDes Model with CTLE block

You can configure a Simulink SerDes Model with a CTLE block by opening the CTLE block
parameters and click the “Launch CTLE Fitter App" button. You can follow the same steps outlined

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-15

above in the section Configure CTLE Block in the SerDes Designer App on page 4-3to configure the
CTLE Fitter app and export a GPZ Matrix for use in a CTLE block.

In the Block Parameters of the CTLE, you can click the button to launch the ctlefitter app:

After you close the ctlefitter app, you will see the CTLE block is automatically configured to use
the GPZ Matrix it created:

4 Design and Simulate SerDes Systems Examples

4-16

You can confirm the transfer function represented by the GPZ Matrix has a reasonable magnitude
and phase response by clicking on "Visualize Response" button. These plots are also available in the
SerDes Designer app workflow, and further detailed plots are provided as part of the exported script
template.

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-17

Standalone Mode

Open the CTLE fitter app from the MATLAB command window:

ctlefitter;

4 Design and Simulate SerDes Systems Examples

4-18

You can follow the same steps outlined above in the section Configure CTLE Block in the SerDes
Designer App on page 4-3 to configure the CTLE Fitter app and export a GPZ Matrix to the base
workspace in your MATLAB session.

Once you browse to and open a file containing one or more CTLE filter responses, you will see the
app automatically updates the figure shown on the Plot tab:

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

4-19

See Also
SerDes Designer | CTLE | serdes.CTLE | rational

More About
• “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-27

4 Design and Simulate SerDes Systems Examples

4-20

Convert Scattering Parameter to Impulse Response for SerDes
System

This example shows how to find an Impulse Response by combining a Scattering-Parameter (S-
Parameter) model of a baseband communication channel along with a transmitter and receiver
represented by their analog characteristic impedance values. You will see how to find an Impulse
Response of this network using the sParameterFitter app to create an SParameterChannel
(hyperlink to sParameterChannel in doc) object in SerDes Toolbox™, which also uses some supporting
functions from RF Toolbox™ such as rational (RF Toolbox) and impulse (RF Toolbox).

Configure Variables

The S-Parameter file representing the baseband channel should be a Touchstone 1.0 (.sNp) file.
Typically these are extracted from a software EDA tool or laboratory VNA with a port reference
impedance (50-Ohms is recommended). The following properties are the main settings you would use
to extract an impulse response of the concatenated Transmitter-Channel-Receiver circuit network:

SParameterChannel Properties:

• FileName - Filename of the S-Parameter to be imported.
• PortOrder - Port order for the S-Parameter.
• MaxNumberOfPoles - Maximum number of poles to use for a fit output by the rational function.
• ErrorTolerance - Desired error tolerance in dB for a fit output by the rational function.
• SampleInterval - Sample interval in units of seconds.
• StopTime - Desired duration of the Impulse Response in units of seconds.
• TxR - Single-ended impedance value in Ohms of the analog TX IO structure.
• TxC - Capacitance value in Farads of the analog TX IO structure.
• TxAmplitude - Stimulus amplitude of the Tx output rising waveform.
• TxRiseTime - The 20-80% rise time of the Tx stimulus waveform.
• TxRTFactor - The conversion factor from 20-80% or 10-90% to 0-100% risetime, default is 20-80%.
• RxR - Single-ended resistance value in Ohms of the analog RX IO structure.
• RxC - Single-ended capacitance value in Farads of the Rx structure.
• Signalling - Specify signaling as 'single-ended' or 'differential'.
• AggressorDefinition - Method of acquiring aggressor behavior. For 'same-source' the stimulus is

applied to victim input and probed at aggressor output and for 'same-load' (default) the stimulus is
applied to each aggressor input and probed at the victim output. While the same load definition is
more direct, the same source definition is used by methodologies that rely on time domain
excitation (like HSPICE) to stimulate the system with a single pulse or step response. Consider the
following 4-port single-ended system:

• Through-Ports: (1) -- (3)
• Through-Ports: (2) -- (4)
• The victim line is S31, the same-source crosstalk aggressor is S41 and the same-load crosstalk

aggressor is S32.
• AutoDetectPortOrder - Boolean option to force auto-detect of port order.

Note: defaults are provided for all settings if no entries are made when calling SParameterChannel.

 Convert Scattering Parameter to Impulse Response for SerDes System

4-21

Create the S-Parameter Channel Object:

You create an SParameterChannel object by launching the sParamterFitter app from the
base workspace.

sParameterFitter;

This will allow you to create an impulse response from a Touchstone S-Parameter data file. The app
loads with default parameters for an SParameterChannel object. The equivalent command would
be as follows:

obj = SParameterChannel('FileName','default.s4p',...
 'PortOrder', [1 2 3 4],...
 'MaxNumberOfPoles', 1000,...
 'ErrorTolerance', -40,...
 'SampleInterval', 6.25e-12,...
 'StopTime', 20e-9,...
 'TxR',50,...
 'TxC',0.1e-12,...
 'TxAmplitude', 1.0,...
 'TxRiseTime', 40e-12,...
 'TxRTFactor', 0.6,...
 'RxR',50,...
 'RxC',0.2e-12,...
 'Signaling','differential',...
 'AggressorDefinition','same-load');

4 Design and Simulate SerDes Systems Examples

4-22

It is important to also ensure SampleInterval and StopTime are set appropriately for the Impulse
Response calculation (in this case, 6.25e-12 seconds and 20e-9 seconds, respectively), as well as the
stimulus represented by TxAmplitude and TxRiseTime. Understanding S-Parameters is beyond the
scope of this example, but it is important to remember the bandwidth of an S-Parameter must be
sufficient to model a channel according to the Nyquist-Shannon sampling theorem.

Visualize a Plot of the Impulse Response:

You can plot the impulse response in the sParamterFitter app and export the object
sParameterFit and the impulse response sParameterFitImpulse to the base workspace.

Use Impulse Response for Channel Model in Serdes Designer

You can use the impulse response of the baseband channel model within SerDes Designer by
selecting "Impulse response" for channel model and enter the base workspace variable
sParameterFitImpulse that you created with the sParameterFitter app.

 Convert Scattering Parameter to Impulse Response for SerDes System

4-23

Simulate Channel Network with Transmitter and Receiver in Serdes Designer

You can use the impulse response of the baseband channel model within Serdes Designer in concert
with TX and RX topologies to simulate an eye diagram.

4 Design and Simulate SerDes Systems Examples

4-24

Impulse Response for Channel Model in Simulink

You can use the impulse response of the baseband channel model within Simulink by opening the
Analog Channel block and clicking on the option "Impulse Response" under Channel Model. This
will launch the sParameterFitter app.

 Convert Scattering Parameter to Impulse Response for SerDes System

4-25

See Also
SerDes Designer

4 Design and Simulate SerDes Systems Examples

4-26

Globally Adapt Receiver Components Using Pulse Response
Metrics to Improve SerDes Performance

This example shows how to perform optimization of a set of receiver components as a system using
function optPulseMetric to calculate metrics such as eye height, width and channel operating
margin (COM) estimate from a pulse response at a target bit error rate (BER) to evaluate the optimal
performance of a particular configuration. The adaptation is performed as statistical analysis (Init),
then the optimized result is passed to time-domain (GetWave).

Initialize SerDes System with Multiple CTLEs and DFECDR

This example uses the SerDes Designer model rx_ctle_adapt_dfe_train as a starting point. Type
the following command in the MATLAB® command window to open the model:

>> serdesDesigner('rx_ctle_adapt_dfe_train.mat')

This project contains a receiver section with two CTLE blocks followed by a DFECDR block. In their
default configuration, these blocks optimize individually. The goal of this example is to optimize the
blocks as a system.

For the CTLE_LowFreq block, the Peaking frequency (GHz) is set to [10 11 12 13 14 15 16],
the DC gain (dB) is set to [0 0 0 0 0 0 0], and the Peaking gain (dB) is set to 0. All other
parameters are kept at their default values.

For the CTLE_HighFreq block, the Specification is set to DC Gain and AC Gain, the Peaking
frequency (GHz) is set to 14, the DC gain (dB) is set to 0, and the AC gain (dB) is set to [0 1 2
3 4 5 6 7 8 9 10 11 12 13 14 15]. All other parameters are kept at their default values.

For the DFECDR block, the Initial tap weights (V) is set to [0 0 0 0 0 0 0 0 0 0]. All other
parameters are kept at their default values.

Export the SerDes system to a Simulink® model.

Add Code to Optimize CTLEs and DFECDR as System

Double click the Init subsystem inside the Rx block and click on the Show Init button. You can place
code in the Custom user code area from the following steps and save the model. The code is broken
down below in several subsections for easy comprehension.

Note: To complete the example, you can also reference the attached file
'rx_init_custom_user_code.m' and place in the Custom user code area inside the Init

 Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

4-27

subsystem. For more information about Init subsystem, see “Statistical Analysis in SerDes Systems”
on page 1-19.

Initialize Receiver Parameters

The first section of the Custom user code area checks if both CTLEs are in adapt mode and
instantiating variables to hold temporary values and the best configuration metrics.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
% If both CTLEs are in Adapt mode, use global adaptation
if CTLE_LowFreqParameter.Mode == 2 && CTLE_HighFreqParameter.Mode == 2
 CTLE_LowFreqInitBestConfig = 0;
 CTLE_HighFreqInitBestConfig = 0;
 bestMetric = 0;
 SPB = SymbolTime/SampleInterval;

Sweep CTLE Parameters

The example code sets the CTLE.Mode parameter from adapt to fixed to allow algorithmic control
of the values for each block. In this case the values are directly swept and the blocks are called to
process the impulse response.

 CTLE_LowFreqInit.Mode = 1;
 CTLE_HighFreqInit.Mode = 1;
 for CTLE_LowFreqInitSweep = 0:1:6
 for CTLE_HighFreqInitSweep = 0:1:15
 % Set current sweep configs on each CTLE
 CTLE_LowFreqInit.ConfigSelect = CTLE_LowFreqInitSweep;
 CTLE_HighFreqInit.ConfigSelect = CTLE_HighFreqInitSweep;
 % Call CTLEs and DFE
 [sweepImpulse, ~] = CTLE_LowFreqInit(LocalImpulse);
 [sweepImpulse, ~] = CTLE_HighFreqInit(sweepImpulse);
 [sweepImpulse, ~, ~, ~, ~] = DFECDRInit(sweepImpulse);

Convert Impulse Response to Pulse Response and Evaluate with optPulseMetric

Convert the impulse response to a pulse response for evaluation by the function optPulseMetric. A
pulse response lends itself to metrics-based evaluation more readily than an impulse response. The
optPulseMetric function is used to optimize the SerDes system as a whole. Many metrics are
reported by this function and you can use an algorithm to evaluate multiple receiver components
together as a system.

Note: The function optPulseMetric is designed to analyze a single response, not a matrix of
responses, so you can use sweepPulse(:,1) to trim the main response from an impulse matrix or
pulse matrix.

 % Convert impulse after DFE to pulse then calculate eye metrics
 sweepPulse = impulse2pulse(sweepImpulse,SPB,SampleInterval);
 eyeMetric = optPulseMetric(sweepPulse(:,1),SPB,SampleInterval,1e-6);
 % Select eye metric to evaluate results
 sweepMetric = eyeMetric.maxMeanEyeHeight;
% sweepMetric = eyeMetric.maxEyeHeight;
% sweepMetric = eyeMetric.maxCOM;
% sweepMetric = eyeMetric.centerMeanEyeHeight;
% sweepMetric = eyeMetric.centerEyeHeight;
% sweepMetric = eyeMetric.centerCOM;

4 Design and Simulate SerDes Systems Examples

4-28

Evaluate optPulseMetric Results

Save the CTLE configurations based on comparison to previous results. The final best configurations
are saved on the blocks for a final statistical (Init) analysis and then passed to time-domain (GetWave)
simulation.

 % If current sweep metric is better than previous, save the CTLE configs
 if sweepMetric > bestMetric
 bestMetric = sweepMetric;
 CTLE_LowFreqInitBestConfig = CTLE_LowFreqInitSweep;
 CTLE_HighFreqInitBestConfig = CTLE_HighFreqInitSweep;
 end
 end
 end
 % Set CTLEs to best configs from sweep
 CTLE_LowFreqInit.ConfigSelect = CTLE_LowFreqInitBestConfig;
 CTLE_HighFreqInit.ConfigSelect = CTLE_HighFreqInitBestConfig;
end
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Run SerDes System

Run the SerDes system and observe the optimizing behavior. You can try changing which metric is
evaluated to perform different optimizations.

 Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

4-29

4 Design and Simulate SerDes Systems Examples

4-30

See Also
optPulseMetric | DFECDR | CTLE

More About
• “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2
• “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
• “Statistical Analysis in SerDes Systems” on page 1-19

 Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

4-31

Globally Adapt Receiver Components in Time Domain

This example shows how to perform optimization of a set of receiver components as a system during
Time Domain (GetWave) Simulation. You will see how to setup a CTLE and a DFECDR Block so their
settings adapt together globally during simulation. This is a follow on to the example "Globally Adapt
Receiver Components Using Pulse Response Metrics to Improve SerDes Performance."

Receiver Component Global Adaptation Overview:

The receiver components for CTLE and DFECDR can work together to perform adaptation in Time
Domain simulation. Normally, they operate independently as follows:

• CTLE adapts in Statistical (Init), then sets to this value when Time Domain simulation begins
• DFECDR adapts in Statistical (Init), then sets to these tap values for Time Domain and the Block

proceeds to continuously train tap values

You can follow these steps to customize the CTLE and DFECDR to share signals within the RX system
to adapt together globally during Time Domain simulation:

Part 1: Determine A Method for Optimizing RX Waveform vs. Equalization

You will see how equalization can affect RX waveforms to be either over-equalized, under-equalized,
or critically-equalized (e.g. similar to how filter responses can be defined as over-damped, under-
damped, or critically-damped).

Note: The concept of data words (3 symbols per word) from Communications Theory is used in this
example.

Low Frequency (LF) and a High Frequency (HF) data word are defined for this example as follows:

• A LF word retains same logical value across 3 symbol UI (e.g. 111 or 000) to represent non-
changing bit-to-bit values within a word.

• A HF word changes during the 3 symbol UI (e.g. 101 or 010) to represent changing bit-to-bit
values within a word.

Note: a CTLE block optimizes for inner-eye (HF content only).

Part 2: Customize Simulink Blocks in Receiver Section

• Disable CTLE internal adaptation by connecting output to a terminator
• Change CTLE input to use a signal from the DFECDR (which allows adaptation together globally)
• Customize the DFECDR by creating a MATLAB function block that evaluates Eye metrics,

depending on Interior bus and CTLE parameters, then outputs a value to use for CTLE
configuration.

Part 3: Implement Custom MATLAB Function to Adapt Equalization during Time Domain
Simulation

• In the DFECDR, code the MATLAB function to operate on input signals during UI boundaries
rather than on each sample interval

• Add conditional statements to compare Eye metrics between Low Frequency (LF) data words and
High Frequency (HF) data words, to determine next best equalization value.

4 Design and Simulate SerDes Systems Examples

4-32

• The equalization value output by the MATLAB function is a Signal in Simulink. This means the
CTLE block will use this as its input- so every time it changes, the RX waveform will be equalized
with this new value during Time Domain simulation.

Note: Blocks within the RX system can share signals. This is also true within the TX system. However,
no signals can be shared between RX and TX systems.

Part 1: Determine a Method for Optimizing Receiver Waveform vs. Equalization

Initialize SerDes System with CTLE and DFECDR in the Receiver

Open the system by typing serdesDesigner(‘TDadapt.mat’). You will see a system with a basic TX,
100-ohm channel with a loss of 16dB at 5GHz, and an RX containing a CTLE followed by a DFECDR.
In this example, the CTLE is customized to use "fixed" mode (because this example shows how to
programatically adapt by evaluating fixed values in a MATLAB function), and specification set to
"DC Gain and Peaking Gain," and set "DC gain" to a range of 0 to -15 dB (in increments of -1dB), and
set "Peaking gain" to a range of 0 to +15dB (in increments of +1dB) as shown below. Also note that
the DFECDR should be set to "adapt" mode.

You can click on the CTLE and set the mode to "fixed."

Then you can cycle through different values for Configuration Select for the CTLE and observe the
effect of different equalization values on the receiver eye diagram:

 Globally Adapt Receiver Components in Time Domain

4-33

Figure Above: Under-equalized RX waveform: CTLE Configuration Select set to 0 (minimum).

4 Design and Simulate SerDes Systems Examples

4-34

Figure Above: Over-equalized RX waveform: CTLE Configuration Select set to 15 (maximum).

 Globally Adapt Receiver Components in Time Domain

4-35

Figure Above: Critically-equalized signal: CTLE Configuration Select set to 7 (e.g. a midrange
value).

You can develop an algorithm to optimize the receiver signal by using the concept of Equalization. For
example, an RX signal can be considered as being over-equalized, under-equalized, or critically-
equalized:

Part 2: Customize Simulink Blocks in Receiver System

Export the system to Simulink.

4 Design and Simulate SerDes Systems Examples

4-36

Inside the Receiver section, you can modify the CTLE and DFECDR to share values using Signals in
order to enable global adaptation during Time Domain simulation.

Modify the CTLE

You can look under the CTLE mask (CTRL-U), then change the ConfigSelect output to a Terminator
instead of a DataStoreWrite. By placing a Terminator at the ConfigSelect output, the CTLE is no
longer in feedback mode, and any other block in the RX system can take control of this CTLE by
writing to its ConfigSelect input signal.

You will change the CTLE.ConfigSelect output to connect to a terminator:

 Globally Adapt Receiver Components in Time Domain

4-37

Add CTLE Adaptation to the DFECDR

You can now modify the DFECDR to control the value of ConfigSelect input used by the CTLE during
Time Domain simulation. This can be accomplished by adding a MATLAB function that uses the
following parameters to evaluate a CTLE configuration to adapt to the next best equalization value:

• Mode

• ConfigIn

• symbolRecovered

• voltageSample

Next, you will see how to change the DFECDR to add this MATLAB function.

You will see a bus selector at the output port Interior. Double click to open its Block Parameters
menu and make the following changes:

4 Design and Simulate SerDes Systems Examples

4-38

Click on signal symbolRecovered and click button marked “Select>>” and repeat this for
voltageSample. These are optional outputs which is why you have to enable these. Also, you need to
change the configuration of and symbolTime and sampleInterval from "signal" to "parameter." You
can do this from the "edit data" toolstrip while in the function editor in MATLAB:

 Globally Adapt Receiver Components in Time Domain

4-39

Add a MATLAB function to the Simulink canvas. You can get Simulink to automatically generate the
ports by defining the function statement line of code as follows:

% ctleTimeDomainAdapt - Simple adaptation algorithm to optimize a CTLE configuration
% in the time domain for NRZ signals. Current serdes.CTLE
% adapts in Init/Statistical only.
%
% Goal is to monitor the symbol decisions and voltage level of decisions from the
% serdes.DFECDR. From this, calculate the high and low frequency voltage averages to
% adjust the CTLE config bringing the averages together. Once settled, detect toggle
% of config and lock adapted configuration. The config adjustment operates under the
% assumption that the CTLE 'boost' increases with increasing config from 0 to X and
% modulation is NRZ only.

% Copyright 2020 The MathWorks, Inc.

4 Design and Simulate SerDes Systems Examples

4-40

function config = ctleTimeDomainAdapt(mode, configIn, symbolRecovered, voltageSample, SampleInterval, SymbolTime)

Note: You can either use the code snippets concatenated as they are explained in this example, or
you can use the attached MATLAB function "ctleTimeDomainAdapt.m" for reference.

Alternatively you can use the canvas tools in Simulink to create the ports. Using either method, the
ports should appear as follows:

Inputs:

• mode
• configIn
• voltageSample
• symbolRecovered
• Note: symbolRecovered and voltageSample are optional outputs of the DFECDR block as

shown in the Bus Selector above.

Output (same as function name):

• config

Create a constant block and configure its Element Assignment to CTLESignal.Mode. Then connect it
to the function input port for mode.

Next, create a datastore read block, and configure the Element Assignment to
CTLESignal.ConfigSelect. Then connect it to the function input port for configin.

Next, create a datastore write block, and configure the Element Assignment to
CTLESignal.ConfigSelect. Then connect it to the function output port for config.

 Globally Adapt Receiver Components in Time Domain

4-41

Note: you can add a Scope to observe the adapting values of CTLESignal.ConfigSelect during
simulation.

When you are finished connecting the signals, the DFECDR will appear as follows:

4 Design and Simulate SerDes Systems Examples

4-42

Part 3: Implement Algorithm to Adapt Equalization during Time Domain Simulation

You can edit the file "ctleTimeDomainAdapt.m" attached to this example as a starting point for your
adaptation algorithm. This example makes use of Persistent variables to keep track of values each
time the MATLAB function is called. As a starting point, you will evaluate if the variables are non-zero
(e.g. using function isempty()), so that when the first time the function is called, they can be
initialized. After this point, their values will be configured by the CTLE and DFECDR blocks working
together.

 persistent sps sampleCounter symbolCounter
 persistent internalConfig updateConfig symbols voltages
 persistent lowFreqCount highFreqCount lowFreqVoltage highFreqVoltage
 persistent preventToggle toggling

 if isempty(sps)
 sps = SymbolTime/SampleInterval;
 sampleCounter = 0; % Total samples
 symbolCounter = 0; % Total symbols
 internalConfig = configIn; % Take config from Init and set for initial config
% internalConfig = 0; % Use this instead to ignore value from Init
 updateConfig = false;
 symbols = [0 0 0]; % Symbol history (3)
 voltages = [0 0 0]; % Voltage at each symbol (3)
 lowFreqCount = 0; % Low frequency event count
 highFreqCount = 0; % High frequency event count
 lowFreqVoltage = 0; % Voltage sum at low frequency events
 highFreqVoltage = 0; % Voltage sum at high frequency events
 preventToggle = [0 0 0 0]; % Toggle tracker; last 4 config updates -1/+1
 toggling = false; % Toggle detected flag
 end

Note: When a variable is Persistent, that variable retains its value. Otherwise they are instantiated as
undefined for each time a MATLAB function is called.

Implement Watchdogs such as a Toggle Detector

You can implement many types of watchdog testing, but this example implements a toggle detector. If
the CTLE is at a given value and begins to increment or decrement by 1 (e.g. 4-5, 5-4, 4-5) from word
to word, the program will test for a toggle condition by detecting 3 repetitions. If true, it exits the
loop, thus the CTLE retains its trained optimal value.

Note: You can see an example implementation of such an algorithm in the attached file.

 if mode == 2 && ~toggling

Understanding Data Slicers

You can use the signals symbolRecovered and voltageSample to process the RX waveform. But
first, it is important to understand Data Slicer operation:

1. Each time the clock time occurs at the start of a UI,

2. The DFECDR block applies its taps,

3. The data slicer is triggered at +0.5 UI later,

4. Then the tap value decision occurs for that bit.

 Globally Adapt Receiver Components in Time Domain

4-43

A data slicer outputs both a symbol and a voltage. For example, if the data slicer operates at the 0.5
UI location, the slicer outputs a symbol as +0.5 or -0.5 and voltage value the symbol has reached.

Find UI Boundaries from Data Slicer

The system runs on a sample-based time step, so you can keep track of UI boundaries by setting up a
sample and symbol counter. When a sample count is divisible by this setting for "samples per bit," this
defines a symbol boundary. This way, you can find combinations of HF (e.g. 010, 101) or LF (e.g. 111,
000) data words to optimize for critical equalization:

 % How often to update CTLE Config
 updateFrequencySymbols = 1000;
 % Range of CTLE configurations
 minCTLEConfig = 0;
 maxCTLEConfig = 15;
 % Set up a sample and symbol counter to track overall progress
 sampleCounter = sampleCounter+1; % Every call to this function is a sample
 % When sample count is divisible by samples per bit, there is a symbol boundary
 if mod(sampleCounter,sps) == 0
 symbolCounter = symbolCounter+1;
 updateConfig = true; % Flag to keep from looping in update section
 % Maintain bit/voltage history
 symbols = [symbols(2:3) symbolRecovered]; % -0.5 or 0.5
 voltages = [voltages(2:3) voltageSample]; % Voltages at each symbol
 % Keep count of low/high frequency events and sum voltages across those events
 % Low frequency = Steady high or low
 % High frequency = Rapid tranition
 if isequal(symbols, [0.5 0.5 0.5]) || isequal(symbols, [-0.5 -0.5 -0.5]) % 1 1 1 OR 0 0 0
 lowFreqCount = lowFreqCount + 1;
 lowFreqVoltage = lowFreqVoltage+ abs(voltages(2)); % keep middle voltage sample
 elseif isequal(symbols, [-0.5 0.5 -0.5]) || isequal(symbols, [0.5 -0.5 0.5])% 0 1 0 OR 1 0 1
 highFreqCount = highFreqCount + 1;
 highFreqVoltage = highFreqVoltage+ abs(voltages(2)); % keep middle voltage sample
 end
 end

Find 3-Symbol Combinations to Sort HF vs. LF Signal Content

You can use MATLAB function Mod to find when the samples/s has reached Mod 0, which defines the
UI boundary. Once the symbol counter has reached modulo 0, you can accumulate these locations as
bits. Then after accumulating sufficient bits (e.g. 1000), calculate the average of the voltages across
this population, and update the CTLE Configuration.

Create an if statement to perform the following test and decision:

• If signal is 111 or 000, increment count variable for LF
• If signal is 010 or 101, increment count variable for HF
• For each case, take the voltage at that symbol and increment variable for voltage counter

 % When symbol count is divisible by update frequency, check if CTLE update is needed
 if mod(symbolCounter,updateFrequencySymbols) == 0 && updateConfig
 % Calculate low/high voltage average
 lowFreqAvg = lowFreqVoltage/lowFreqCount;
 highFreqAvg = highFreqVoltage/highFreqCount;

4 Design and Simulate SerDes Systems Examples

4-44

Update the CTLE

You can implement any algorithm you wish, but in this example the CTLE begins with configSelect
value from Init, and the function performs an increment. Each time the DFECDR is evaluated and
compared to a Persistent variable. Depending on this results, the CTLE is incremented or
decremented.

Note: It is important for your code to test that CTLE is not set to an invalid configSelect.

 % Increase CTLE config if low freq is above high freq
 if lowFreqAvg > highFreqAvg
 % Prevent exceeding maximum CTLE config
 if internalConfig < maxCTLEConfig
 % If toggle is detected, disable adaptation
 if ~isequal(preventToggle,[1 -1 1 -1])
 internalConfig = internalConfig + 1;
 % Add current action to toggle tracker
 preventToggle = [preventToggle(2:4) 1];
 else
 toggling = true;
 end
 end
 % Decrease CTLE config if high freq is above low freq
 elseif lowFreqAvg <= highFreqAvg
 % Prevent exceeding minimum CTLE config
 if internalConfig > minCTLEConfig
 if ~isequal(preventToggle,[-1 1 -1 1])
 internalConfig = internalConfig - 1;
 % Add current action to toggle tracker
 preventToggle = [preventToggle(2:4) -1];
 else
 toggling = true;
 end
 end
 end
 % Reset variables associated with averaging every updateFrequencySymbols
 lowFreqCount = 0;
 lowFreqVoltage = 0;
 highFreqCount = 0;
 highFreqVoltage = 0;
 updateConfig = false; % Lock updates until next symbol boundary
 end
 end

 config = internalConfig;
end

 Globally Adapt Receiver Components in Time Domain

4-45

Figure: Eye Diagram during Time Domain simulation.

You can see on the Scope that the CTLE started with the value from Init, and the toggle-detector code
"locks" the CTLE configuration after a few iterations:

4 Design and Simulate SerDes Systems Examples

4-46

Figure: When Time Domain simulation begins, the CTLE starts with the value from Init.

You can set the code to start from CTLE configuration 0 and see that the algorithm increments the
configuration until it toggles:

 Globally Adapt Receiver Components in Time Domain

4-47

Figure: Scope output from the signal CTLESignal.ConfigSelect if the function is programmed to
start from zero instead of the value from Init.

To find the value for Ignore Bits for the receiver, you can evaluate how many UI it takes for a CTLE to
settle. In this case, it would be equal to the number of CTLE configurations available.

4 Design and Simulate SerDes Systems Examples

4-48

Figure: You can set the value for Ignore Bits to 16, which is the number of CTLE configurations
available in this example.

When the simulation completes, you can see the Time Domain Eye has a valid Bathtub Curve if the
simulation uses sufficient Ignore Bits for the receiver.

Figure: Statistical and Time Domain Results with sufficient Ignore Bits.

You can test the effect of Ignore Bits by setting the value to zero and re-running the simulation:

 Globally Adapt Receiver Components in Time Domain

4-49

Figure: You can set the value for Ignore Bits to 0 from 16 to test its effect of Time Domain results.

4 Design and Simulate SerDes Systems Examples

4-50

Figure: Statistical and Time Domain Results with insufficient Ignore Bits.

See Also
optPulseMetric | DFECDR | CTLE

More About
• “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-27

 Globally Adapt Receiver Components in Time Domain

4-51

Model Clock Recovery Loops in SerDes Toolbox

This example shows how to create detailed models of different types of serial channel clock recovery
loops such as Alexander (bang-bang), Meuller-Muller, and Hogg & Chu.

Clock Recovery Model Structure

To model a clock recovery loop accurately, the representation of the clock edge times and the
associated sampling of the data signal must be as precise as possible. This example demonstrates a
method for accomplishing that within a model that uses a fixed step discrete sample time. This
method is packaged inside the Clock Generator and Signal Sampler blocks from the Mixed-Signal
Blockset. The Clock Generator models the voltage controlled oscillator (VCO) of the clock recovery
loop by maintaining an exact calculation of the clock edge time, including an accurate model of phase
noise, and provides the exact clock edge time, along with a saturated clock, to the Signal Sampler.
The Signal Sampler models the data decision latch or sample and hold circuit triggered by the clock
edge. At the first fixed step sample time after a clock edge, the Signal Sampler applies linear
interpolation to its input signal and outputs the resulting estimate of the input signal value at exactly
the clock edge time.

The behavior of the clock oscillator and data sampling latch are very similar for different types of
clock recovery loops. But the behavior and implementation of the phase detector and loop filter can
vary much more widely. For example, for an Alexander clock recovery loop, the phase detection is
based on comparison of logic values latched at the rising and falling edges of the clock. In contrast,
Hogg & Chu phase detection compares the timing of the clock falling edge with the data threshold
crossing time, and Mueller-Muller phase detection depends solely on voltage sampling at the baud
rate. The clock recovery loop model treats the loop filter as a separate block, making it as easy as
possible to accommodate these differences.

This example also demonstrates the design of a second order clock recovery loop. The design process
is applied to a Mueller-Muller loop filter, but could be applied to the other loop filter types as well.

Example Model Structure

You can develop a model similar to the model in this example by exporting a Simulink model from the
SerDes Designer app. In the receiver model, include a PassThrough block where the clock recovery
loop should go, and then manually modify the PassThrough block in Simulink.

To find the clock recovery loop in the model SerdesClockRecovery, open the top level model, then
open the receiver block within the example model, and then open the PassThrough block (renamed as
DFE_CDR).

open_system('SerdesClockRecovery.slx');
toplevel = gcs;

4 Design and Simulate SerDes Systems Examples

4-52

 Model Clock Recovery Loops in SerDes Toolbox

4-53

The model exported from the SerDes Designer app consists of a Non-Return to Zero (NRZ) stimulis
generator, a transmitter, passive analog channel, receiver and eye diagram display.

Use scope displays to view the data signal and the clock recovery feedback signal.

Open the receiver model to view its internal structure.

open_system('SerdesClockRecovery/Rx');

4 Design and Simulate SerDes Systems Examples

4-54

The receiver consists of a Continuous Time Linear Equalizer (CTLE) and a custom block that models
the combination of a Decision Feedback Equalizer (DFE) and a Clock/Data Recovery (CDR) block. The
CTLE supplies much of the equalization of the received signal, and the DFE adaptively refines the
equalization while the CDR adaptively recovers the clock phase.

The DFE and CDR adaptive loops are combined in a single block because the adaptive loops are
coupled. Acquisition of the correct clock phase helps the DFE loop configure the optimum
equalization, and the DFE equalization helps the CDR loop acquire the correct clock phase.

Open the DFE/CDR block to view its internal structure.

open_system('SerdesClockRecovery/Rx/DFE_CDR','force');

 Model Clock Recovery Loops in SerDes Toolbox

4-55

DFE/CDR Model

The DFE is modeled as a single system object that takes the input waveform as an input signal but
also requires a recovered clock signal and a signal containing the detected data. The clock is
provided by the Clock Generator in the CDR loop while the detected data is provided by a Signal
Sampler block ("Latch") connected to the output of the DFE and configured as a latch to model the
data decision latch in the receiver. A single sample delay is inserted in both the clock and detected
data paths to avoid creating an algebraic loop.

The CDR is modeled using a Clock Generator block to model the VCO in the clock recovery loop and
two Signal Sampler blocks ("Rise Signal Sample" and "Fall Signal Sample") to sample the DFE output
signal at both the rising and falling clock edges. This configuration reflects typical hardware design
practice and does mean, in particular, that the loop filter must output a frequency control voltage
rather than a desired phase or similar signal.

The CDR model offers the ability to select between any of four loop filters: Alexander (bang-bang),
first order Mueller-Muller, second order Mueller-Muller, and Hogg & Chu. A single sample delay is
inserted in the VCO control path to avoid creating an algebraic loop. The loop filters are all
implemented as system objects and the example contains the source code for these classes.

The timing in the loop filter is not critical, and loop filter processing can be performed at the sample
time when the loop filter receives a clock transition. In particular, the loop filters are coded in a way
that does not require knowledge of either the symbol time or the sample interval, thus avoiding
problems when generating an IBIS-AMI model through SerDes Toolbox.

Alexander (Bang-Bang) Clock Recovery

The Alexander clock recovery loop detects the clock phase by determining whether the sign of the
data signal at the falling edge of the clock matches the sign of the data signal at the rising edge of the
clock that occurred either before or after the falling edge. If the sign at the falling edge matches the
sign at the previous rising edge but not the subsequent rising edge, then the clock is early.
Conversely, if the sign at the falling edge matches the sign at the subsequent rising edge but not the
sign at the previous rising edge, then the clock is late. The loop filter is an up-down counter that
produces either a positive (early) or negative (late) pulse when it overflows. For a detailed
explanation of an Alexander clock recovery loop, see “Clock and Data Recovery in SerDes System” on
page 1-3.

The initial configuration of the SerDesClockRecovery model selects the output of the Alexander loop
filter to control the clock phase in the Clocked Sampler.

Run the simulation and plot the time history and the histogram of the recovered clock phase. Save
the time history of the recovered clock phase to the base workspace so that you can analyze it as you
choose.

simout = sim(toplevel);
ctBB = plotClockTimes(simout,toplevel);

4 Design and Simulate SerDes Systems Examples

4-56

 Model Clock Recovery Loops in SerDes Toolbox

4-57

4 Design and Simulate SerDes Systems Examples

4-58

 Model Clock Recovery Loops in SerDes Toolbox

4-59

4 Design and Simulate SerDes Systems Examples

4-60

Meuller-Muller Clock Recovery

The Meuller-Muller clock recovery algorithm assumes that the data waveform changes fastest when
there is a transition between data symbol values, such as a transition from a one to a zero for an NRZ
data signal. This assumption enables the clock recovery loop to use one quantitative voltage per
symbol, which is an advantage at high data rates. The time error estimate for the example's Meuller-
Muller Loop Filter is drawn from CLOCK AND DATA RECOVERY FOR HIGH-SPEED ADC-BASED
RECEIVERS, section 2.3.1

where is the previous voltage sample, is the current voltage sample, is the previous
latched symbol value and is the current latched symbol value.

To evaluate the response of the Meuller-Muller clock recovery loop, move the Filter Select 1 switch to
its second input port. Run the simulation and add the time history of the recovered clock phase and
clock phase histogram to the figures that have already been created for the Alexander clock recovery
loop. Save the time history of the clock phase to the base workspace so that you can analyze it later.

set_param([gcs '/Filter Select 1'],'sw','0');
simout = sim(toplevel);
ctMM1 = plotClockTimes(simout,toplevel);

 Model Clock Recovery Loops in SerDes Toolbox

4-61

https://tspace.library.utoronto.ca/bitstream/1807/27606/1/Tyshchenko_Oleksiy_201103_PhD_thesis.pdf
https://tspace.library.utoronto.ca/bitstream/1807/27606/1/Tyshchenko_Oleksiy_201103_PhD_thesis.pdf

4 Design and Simulate SerDes Systems Examples

4-62

 Model Clock Recovery Loops in SerDes Toolbox

4-63

4 Design and Simulate SerDes Systems Examples

4-64

 Model Clock Recovery Loops in SerDes Toolbox

4-65

Hogg & Chu Clock Recovery

The Hogg & Chu clock recovery algorithm performs a relatively direct measurement of the clock
phase by measuring the time between the threshold crossing of the data signal and the falling edge of
the recovered clock. While blocks could be added to the example model to measure the data signal
threshold crossing time directly, the Hogg & Chu Loop Filter in this example uses the simplifying
approximation that the data signal slope in the threshold crossing region is constant. As estimated
once a threshold crossing has been confirmed by the the sample at the next clock edge, the time
error is

where is the previously detected data symbol value, is the voltage recorded on the previous
clock edge, and is the maximum data signal amplitude.

To evaluate the reponse of the Hogg & Chu clock recovery loop, move the Fiter Select 3 switch to its
second input port. Run the simulation, and add the time history of the recovered clock phase and
clock phase histogram to the figures that have already been created for the Alexander and Meuller-
Muller clock recovery loops. Save the time history of the clock phase to the base workspace so that
you can analyze it later.

set_param([gcs '/Filter Select 3'],'sw','0');
simout = sim(toplevel);
ctHC = plotClockTimes(simout,toplevel);

4 Design and Simulate SerDes Systems Examples

4-66

 Model Clock Recovery Loops in SerDes Toolbox

4-67

4 Design and Simulate SerDes Systems Examples

4-68

 Model Clock Recovery Loops in SerDes Toolbox

4-69

4 Design and Simulate SerDes Systems Examples

4-70

Second Order Clock Recovery

A CDR loop is a phase-locked loop (PLL) for which the clock reference is provided by a received data
signal and the phase detector is designed to work with this form of reference. As such, most early
CDR loops were first order PLLs; however second order CDR loops are now common. A first order
PLL/CDR control loop attempts to minimize the phase error directly while in a second order PLL/CDR
control loop includes an integrator that zeros out the frequency offset directly.

The design2ndOrderCDR() function supplied with this example uses the equations from https://
www.ti.com.cn/cn/lit/ml/snaa106c/snaa106c.pdf, Chapter 38. In addition to open loop transfer
function gain, poles and zero, this function calculates a set of biquad filter coefficients that can be
used directly in a dsp.BiquadFilter block.

The only additional step required is to estimate the gain of the phase detector.

For an Alexander loop filter, the phase detector gain is inversely proportional to the time axis width of
the threshold crossing region in the eye diagram. One reasonable approximation is to assume that the
density of the threshold crossings is a parabolic function of the timing offset. For this approximation,
the phase detector gain varies with threshold crossing time and the maximum phase detector gain (in
the center of the threshold crossing region) is

volts per radian, where is the voltage amplitude of a loop filter's "up" or "down" output pulse,
maintained over one symbol time, is the symbol time and is the maximum deviation of the

 Model Clock Recovery Loops in SerDes Toolbox

4-71

https://www.ti.com.cn/cn/lit/ml/snaa106c/snaa106c.pdf
https://www.ti.com.cn/cn/lit/ml/snaa106c/snaa106c.pdf

threshold crossing time from the average threshold crossing time. (The total width of the threshold
crossing region is .)

For a Mueller-Muller loop filter the output varies linearly from plus one half the received signal
amplitude to minus one half the received signal amplitude over a range of radians. The phase
detector gain (in volts per radian) is therefore

You can use the demonstrate2ndOrderCDRDesign script supplied with this example to see how the
design2ndOrderCDR() function is used. This scipt also uses Control System Toolbox methods, if
available, to evaluate the loop dynamics.

The Second Order Mueller-Muller Loop Filter in this example has been configured to use the biquad
filter coefficients produced by the demonstrate2ndOrderCDRDesign script. To run the CDR loop with
this loop filter, set the Filter Select 2 switch to its second input port and set the Filter Select 3 switch
to its first input port. Run the simulation, and add the time history of the recovered clock phase and
clock phase histogram to the figures that have already been created for the other clock recovery
loops. Save the time history of the clock phase to the base workspace so that you can analyze it later.

set_param([gcs '/Filter Select 2'],'sw','0');
set_param([gcs '/Filter Select 3'],'sw','1');
simout = sim(toplevel);
ctMM2 = plotClockTimes(simout,toplevel);

4 Design and Simulate SerDes Systems Examples

4-72

 Model Clock Recovery Loops in SerDes Toolbox

4-73

4 Design and Simulate SerDes Systems Examples

4-74

 Model Clock Recovery Loops in SerDes Toolbox

4-75

4 Design and Simulate SerDes Systems Examples

4-76

Observe the Effect of VCO Frequency Offset

The Clock Generator block has both a reference offset and a phase offset input port. You can use the
reference offset input port to observe the performance improvement that a second order CDR loop
provides compared to a first order CDR loop.

In the SerDes IBIS-AMI Manager accessed from the top level of the receiver block, set the
DFE_CDR.ReferenceOffset IBIS-AMI parameter value to 250 (ppm) and rerun the simulations for the
First Order Mueller-Muller Loop Filter and the Second Order Mueller-Muller Loop Filter. In the
results you observe that the clock time for the First Order Mueller-Muller Loop Filter occurs 5ps later
in the eye diagram, and the eye height at the clock time is reduced from 114mV to 107mV.

 Model Clock Recovery Loops in SerDes Toolbox

4-77

Customize SerDes Systems

• “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2
• “Customizing Datapath Building Blocks” on page 5-14
• “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
• “Step Response Based CTLE ” on page 5-37

5

Customizing SerDes Toolbox Datapath Control Signals

This example shows how to customize the control signals in a SerDes system datapath by adding new
custom AMI parameters and using MATLAB® function blocks. This allows you to customize existing
control parameters without modifying the built-in blocks in the SerDes Toolbox™ library.

This example shows how to add a new AMI parameter to control the operation of the three
transmitter taps used by the FFE block. The custom AMI parameter simultaneously sets all three taps
to one of the ten values defined by the PCIe4 specification or allows you to enter three custom
floating-point tap values. To know more about how to define a PCIe4 transmitter model, see “PCIe4
Transmitter/Receiver IBIS-AMI Model” on page 7-2.

PCIe4 Transfer Model

The transmitter model in this example complies with the PCIe4 specification. The receiver is a simple
pass-through model. A PCIe4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with
one pre-tap and one post-tap, and ten presets.

Open the model adding_tx_ffe_params. The SerDes system Simulink® model consists of
Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

open_system('adding_tx_ffe_params.slx')

• The Tx subsystem contains an FFE block to model the time-domain portion of the AMI model and
an Init block to model the statistical portion.

• The Analog Channel block has the PCIe4 parameter values for Target frequency, Loss,
Impedance and Tx/Rx analog model parameters.

• The Rx subsystem has a Pass-Through block and an Init block.

Add New AMI Parameter

Add a new AMI parameter to the transmitter which is available to both the Init and GetWave datapath
blocks and functions. The parameter is also included in the Tx IBIS-AMI file.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button. Go to the AMI-Tx tab of the SerDeS IBIS-AMI Manager dialog
box.

• Select the FFE parameter, then click Add Parameter... to add a new FFE sub-parameter.

5 Customize SerDes Systems

5-2

• Set the Parameter name to ConfigSelect.
• Keep the Current value as 0.
• In the Description, add Pre/Main/Post tap configuration selector.
• Keep the Usage as In.
• Set the Type to Integer.
• Set the Format to List.
• Under the List Format details, set Default to 0.
• Set List values to [-1 0 1 2 3 4 5 6 7 8 9]
• Set List_Tip values to ["User Defined" "P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7"

"P8" "P9"]

A new parameter ConfigSelect* is added to the AMI-Tx tab.

Modify Init

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the newly
added ConfigSelect*parameter. The ConfigSelect* parameter controls the existing three
transmitter taps. To accomplish this, add a switch statement that takes in the values of
ConfigSelect* and automatically sets the values for all three Tx taps, ignoring the user defined
values for each tap. If a ConfigSelect value of -1 is used, then the user-defined Tx tap values are
passed through to the FFE datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog box and click
the Refresh Init button to propagate the new AMI parameter to the Initialize sub-system.

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize block to open
the Initialize Function.

 Customizing SerDes Toolbox Datapath Control Signals

5-3

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the
SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
FFEParameter.ConfigSelect; % User added AMI parameter
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area, comment out
the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
%FFEParameter.ConfigSelect; % User added AMI parameter
switch FFEParameter.ConfigSelect
case -1 % User defined tap weights
FFEInit.TapWeights = FFEParameter.TapWeights;
case 0 % PCIe Configuration: P0
FFEInit.TapWeights = [0.000 0.750 -0.250];
case 1 % PCIe Configuration: P1
FFEInit.TapWeights = [0.000 0.830 -0.167];
case 2 % PCIe Configuration: P2
FFEInit.TapWeights = [0.000 0.800 -0.200];
case 3 % PCIe Configuration: P3
FFEInit.TapWeights = [0.000 0.875 -0.125];
case 4 % PCIe Configuration: P4
FFEInit.TapWeights = [0.000 1.000 0.000];
case 5 % PCIe Configuration: P5
FFEInit.TapWeights = [-0.100 0.900 0.000];
case 6 % PCIe Configuration: P6
FFEInit.TapWeights = [-0.125 0.875 0.000];
case 7 % PCIe Configuration: P7
FFEInit.TapWeights = [-0.100 0.700 -0.200];
case 8 % PCIe Configuration: P8
FFEInit.TapWeights = [-0.125 0.750 -0.125];
case 9 % PCIe Configuration: P9
FFEInit.TapWeights = [-0.166 0.834 0.000];
otherwise
FFEInit.TapWeights = FFEParameter.TapWeights;
end
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCIe Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200.

Run the simulation and observe the results of Init statistical analysis. Note: The Time Domain
waveform will not be correct until you wire the Constant block for the new parameter ConfigSelect
in the canvas for the FFE. You will see how to do this in the next section.

5 Customize SerDes Systems

5-4

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000.

Run the simulation and observe the results of Init statistical analysis.

 Customizing SerDes Toolbox Datapath Control Signals

5-5

Try different values of ConfigSelect* to verify proper operation. The statistical eye opens and closes
based on the amount of equalization applied by the FFE. How much the eye changes, and the tap
values that create the most open eye varies based on the loss defined in the Analog Channel block.

Modify GetWave

To modify GetWave, add a new MATLAB function that operates in the same manner as the Initialize
function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

5 Customize SerDes Systems

5-6

• You can see that a Constant block was automatically added by the IBIS-AMI manager to the
canvas with the Constant value set to FFEParameter.ConfigSelect.

• Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.
• Rename the MATLAB Function block to PCIe4FFEconfig.
• Double-click the MATLAB Function block and replace the template code with the following:

% PCIe4 tap configuration selector
% Selects pre-defined Tx FFE tap weights based on PCIe4 specified
% configurations.
%
% Inputs:
% TapWeightsIn: User defined floating point tap weight values.
% ConfigSelect: 0-9: PCIe4 defined configuration (P0-P9).
% -1: User defined configuration (from TapWeightsIn).
% Outputs:
% TapWeightsOut: Array of tap weights to be used.
%
function TapWeightsOut = PCIe4FFEconfig(TapWeightsIn, ConfigSelect)

switch ConfigSelect
 case -1 % User defined tap weights
 TapWeightsOut = TapWeightsIn;
 case 0 % PCIe Configuration: P0
 TapWeightsOut = [0.000 0.750 -0.250];
 case 1 % PCIe Configuration: P1
 TapWeightsOut = [0.000 0.833 -0.167];
 case 2 % PCIe Configuration: P2
 TapWeightsOut = [0.000 0.800 -0.200];
 case 3 % PCIe Configuration: P3
 TapWeightsOut = [0.000 0.875 -0.125];
 case 4 % PCIe Configuration: P4
 TapWeightsOut = [0.000 1.000 0.000];
 case 5 % PCIe Configuration: P5
 TapWeightsOut = [-0.100 0.900 0.000];
 case 6 % PCIe Configuration: P6
 TapWeightsOut = [-0.125 0.875 0.000];

 Customizing SerDes Toolbox Datapath Control Signals

5-7

 case 7 % PCIe Configuration: P7
 TapWeightsOut = [-0.100 0.700 -0.200];
 case 8 % PCIe Configuration: P8
 TapWeightsOut = [-0.125 0.750 -0.125];
 case 9 % PCIe Configuration: P9
 TapWeightsOut = [-0.166 0.834 0.000];
 otherwise
 TapWeightsOut = TapWeightsIn;
end

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant blocks connect
to the inputs of the newly defined PCIe4FFEconfig MATLAB function block. The TapWeightsOut signal
from the PCIe4FFEconfig block connects to the TapWeights port of the FFE block.

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCIe Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200. Observe the output waveform.

5 Customize SerDes Systems

5-8

 Customizing SerDes Toolbox Datapath Control Signals

5-9

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000. Observe how the output
waveform changes.

5 Customize SerDes Systems

5-10

 Customizing SerDes Toolbox Datapath Control Signals

5-11

Try different values of ConfigSelect* to verify proper operation. The time-domain eye opens and
closes based on the amount of equalization applied by the FFE. How much the eye changes, and the
tap values that create the most open eye varies based on the loss defined in the Analog Channel
block.

Export the Tx IBIS-AMI Model

Verify that both Init and GetWave are behaving as expected, then generate the final IBIS-AMI
compliant PCIe4 model executables, IBIS and AMI files.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button, then select the Export tab:

• Update the Tx model name to pcie4_tx.
• Tx and Rx corner percentage is set to 10. This will scale the min/max analog model corner

values by +/-10%.
• Verify that Dual model is selected as Model Type for the Tx. This will create model executables

that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore parameter to 3 since there are three taps in the Tx FFE.
• Set the Models to export to Tx only.
• Set the IBIS file name (.ibs) to pcie4_tx_serdes.ibs
• Click the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Model

The PCIe4 transmitter IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator.

5 Customize SerDes Systems

5-12

References

PCI-SIG.

See Also
FFE | PassThrough | SerDes Designer

More About
• “Managing AMI Parameters” on page 6-2
• “PCIe4 Transmitter/Receiver IBIS-AMI Model” on page 7-2

 Customizing SerDes Toolbox Datapath Control Signals

5-13

https://pcisig.com

Customizing Datapath Building Blocks

This example shows how to customize a PassThrough block in Simulink® to use a MATLAB® function
block or other Simulink library blocks. You will see how the implementation of a receiver gain or
attenuation stage is controlled by an IBIS-AMI parameter, and this example provides a guide to
modify PassThrough blocks to implement custom functions for a SerDes system.

PassThrough Block Function and Use

By default, PassThrough block is, as the name implies, a block that passes the input impulse or
waveform to the output with no modifications. This block can be used as a floor planning tool in the
SerDes Designer App and then customized after exporting to Simulink. Under the mask of a
PassThrough block is a MATLAB System block referencing the serdes.PassThrough System object™,
which when called by Simulink forwards the input to the output. The MATLAB System block can be
updated to reference other SerDes System objects or can be replaced with other Simulink blocks as
this example outlines. For an example of customizing with System objects, see “Implement Custom
CTLE in SerDes Toolbox PassThrough Block” on page 5-28.

Create SerDes System in SerDes Designer App

Launch the SerDes Designer app. Place a PassThrough block after the analog model of the receiver.
Change the name of the PassThrough block from PT to CustomExample.

Export the SerDes system to Simulink.

5 Customize SerDes Systems

5-14

Add AMI Parameter to Control Gain

Double click on the Rx block to look inside the Rx subsystem and open the SerDes IBIS-AMI Manager
dialog box.

In the AMI-Rx tab, select the CustomExample node. Click on the Add Parameter button and set
the variables:

• Parameter name to ExampleGain
• Description to Gain setting for Receiver
• Format to Range
• Typ to 0.8
• Min to 0

 Customizing Datapath Building Blocks

5-15

• Max to 1.

Current value, Usage, and Type are kept at their default values 0, In, and Float, respectively.

Confirm settings and click OK.

You will see a parameter automatically generated on the canvas as shown below.

5 Customize SerDes Systems

5-16

Change PassThrough to a MATLAB Function Block

You can create a MATLAB function block and add code to use the ExampleGain parameter as a
modifier to the In signal. To illustrate the workflow, this example will show how to implement a gain
(using multiplication) but any MATLAB function may be implemented for your system.

function out = fcn(in,ExampleGain)

gainSignal = ExampleGain*in;

out=gainSignal;

Then you can delete the PassThrough block, and wire up the MATLAB block with input signals In,
ExampleGain and output signal Out as shown:

Remember to go back to the Rx subsystem, double-click on Init and click the button Refresh Init.
You can see the affect of the value of the parameter ExampleGain by opening the IBIS AMI Manager
and changing the Current value of ExampleGain to 0.8.

 Customizing Datapath Building Blocks

5-17

Run the simulation and observe the results.

5 Customize SerDes Systems

5-18

Change the Current value of ExampleGain to 1.0 and re-run the simulation to confirm
ExampleGain parameter is modifying the Receiver signal.

 Customizing Datapath Building Blocks

5-19

These steps showed you how to implement an AMI parameter called ExampleGain using a MATLAB
function block in your system. You can also use built-in blocks to customize a PassThrough block as
explained in the section "Change PassThrough to Gain Block or Other Built-in Block."

Change PassThrough to Gain Block or Other Built-in Block

Another way to configure a custom PassThrough block for your model is to use a built-in block. For
example, a Gain block can be added within the PassThrough block. Instead of creating a MATLAB
function block, look under the mask of the "CustomExample" block after the parameter
ExampleGain is created from the steps in section "Add AMI Parameter to Control Gain" above:

5 Customize SerDes Systems

5-20

Delete the parameter ExampleGain. You should see the canvas now looks like the default
serdes.PassThrough System Object:

Next, delete the MATLAB System block that points to the serdes.PassThrough System Object:

Add a Gain block from the Simulink > MathOperators library and connect the Gain block between the
input and output ports:

Note: While this example uses a Gain block to illustrated workflow, you can use any built-in block (as
well as a MATLAB function).

 Customizing Datapath Building Blocks

5-21

Connect Block Parameters of Gain Block to Added AMI Parameter

Constants are represented as Simulink parameters. Double click the Gain block to open the Block
Parameters dialog box. Set Gain value to CustomExampleParameter.ExampleGain.

Update Code that Runs During Statistical Analysis

To enable the gain to be applied to the impulse response during statistical analysis, double click the
Init block inside the Rx subsystem. Click the Refresh Init button to add the new AMI parameter to
the Init code. Click the Show Init button to open the MATLAB editor window and look for the
Custom user code area surrounded by %%BEGIN and %END comments. Your code associated with
the customized PassThrough block is encapsulated in this section.

Implement Gain

In the Custom user code area, edit your customized code to perform a Gain operation on the local
variable containing the Impulse Response. To do this, replace the code:

CustomExampleParameter.ExampleGain;

with:

LocalImpulse = LocalImpulse*CustomExampleParameter.ExampleGain;

The Custom user code area should appear as below:

5 Customize SerDes Systems

5-22

Save the changes.

Note: If Init code is not modified, results from the Statistical simulation does not reflect the gain
operation and is only shown in the results from the Time-Domain (GetWave) simulation.

Run Simulation with Gain Setting

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0.8.

Run the simulation and observe amplitude of the waveform from Time-Domain (GetWave) and the
waveform from Statistical (Init) results.

 Customizing Datapath Building Blocks

5-23

Change Gain Setting and Observe Change

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0.4.

Run the simulation again and observe how the amplitude changes for both the waveform from Time-
Domain (GetWave) and the waveform from Statistical (Init).

5 Customize SerDes Systems

5-24

 Customizing Datapath Building Blocks

5-25

These steps showed you how to implement an AMI parameter called ExampleGain using a built-in
block to customize a PassThrough block. You can also implement an AMI parameter using a MATLAB
function block in your system as explained in the section "Change PassThrough to a MATLAB
Function Block."

See Also
PassThrough | Configuration | SerDes Designer

5 Customize SerDes Systems

5-26

More About
• “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28

 Customizing Datapath Building Blocks

5-27

Implement Custom CTLE in SerDes Toolbox PassThrough Block

This example shows how to customize a PassThrough Block in Simulink® to implement a CTLE
System Object™ with user defined AMI parameters. You can use this example as a guide for
modifying PassThrough blocks that leverage system objects. For more information on the purpose of
the PassThrough block and an example of using other Simulink library blocks within them, see
“Customizing Datapath Building Blocks” on page 5-14.

Create SerDes System in SerDes Designer App

In MATLAB®, type serdesDesigner to launch the SerDes Designer app. Place a PassThrough block
after the analog model in the receiver. Change the name of the PassThrough block from PT to
MyCTLE.

Export the SerDes system to Simulink.

Modify PassThrough Block to Implement CTLE

This example builds a custom replica of the CTLE bloc from SerDes Toolbox™. First modify the
contents of PassThrough block to reference a new system object and then implement and connect its
parameters. This addresses the time-domain (GetWave) function of the model. The Init code is then

5 Customize SerDes Systems

5-28

updated to mirror the functionality of time-domain (GetWave) in the statistical analysis. This example
walks you through the whole process using serdes.CTLE System object.

Inside the Rx subsystem, look under mask of PassThrough block MyCTLE. Select the PassThrough
block, press Ctrl+U to open the Block Parameters dialog box of the MATLAB System, and change the
System object name from serdes.PassThrough to serdes.CTLE.

Click OK to save the changes, and you will see the block change from Pass Through to a CTLE:

Note: You can use your own custom System object as well. For example, if you wanted to create a
custom CTLE with a change in the adaptation algorithm:

1 Open the source code of serdes.CTLE.
2 Save a local copy of the source code in a directory.
3 Make the desired changes in the code.
4 Then reference the customized code with the MATLAB System.

To properly link the CTLE to the system-wide parameters SymbolTime and SampleInterval, you
need to set the CTLE to use these parameters as variables rather than hard-coded values. Otherwise
incorrect or unexpected values may be included in the simulation and result in invalid data. Double
click the PassThrough block that now points to the CTLE system object to open the Block parameters
dialog window. In the Advanced tab, set Symbol time (s) to SymbolTime and Sample interval (s)
to SampleInterval. Click OK to save the changes.

 Implement Custom CTLE in SerDes Toolbox PassThrough Block

5-29

Add AMI Parameters to PassThrough Block

Open the SerDes IBIS-AMI Manager dialog box. Under the Model_Specific parameters in the
AMI-Rx tab, select the MyCTLE node and add two new parameters, CTLEMode and
CTLEConfigSelect.

To add CTLEMode parameter, click on the Add Parameter button and set the variables:

• Parameter name to CTLEMode
• Current value to 0
• Description to CTLE Mode: 0 = off, 1 = fixed, 2 = adapt
• Type to Integer
• Format to Range
• Typ to 1
• Min to 0
• Max to 2.

Press Ok to save the changes. You will see the parameter automatically added to the canvas:

5 Customize SerDes Systems

5-30

To add CTLEConfigSelect parameter, select the MyCTLE node again, click on the Add Parameter
button and set the variables:

• Parameter name to CTLEConfigSelect
• Current value to 0
• Description to CTLE Config Select has a range from 0 to 8
• Usage to InOut
• Type to Integer
• Format to Range
• Typ to 0
• Min to 0
• Max to 8.

Press Ok to save the changes. Again, you will see the parameter automatically added to the canvas.

Implement AMI Parameters

Connect the blocks MyCTLEParameter.CTLEMode to the Mode input and
MyCTLESignal.CTLEConfigSelect read to the ConfigSelect input of the PassThrough block.
Connect the ConfigSelect output of the PassThrough block to the
MyCTLESignal.CTLEConfigSelect write block.

For more information, see “Managing AMI Parameters” on page 6-2.

 Implement Custom CTLE in SerDes Toolbox PassThrough Block

5-31

You can double-click on the blocks to confirm connectivity. For example double click on the block
MyCTLESignal.CTLEConfigSelect read to confirm connectivity of the Data Store Read:

This completes setup for the time-domain (GetWave) simulation.

Verify Code for Statistical Analysis

Double click the Init subsystem inside the Rx block to open the Block Parameter dialog box. To
connect the AMI parameters as connected within the MyCTLE block, click the Refresh Init button.
Since you used a system object, this connectivity is generated automatically. To verify this, click the
Show Init button to open the MATLAB code for Init subsystem. You should find code related to the
CTLE AMI parameter connections in the Custom user code area surrounded by the %% Begin and %
End statements.

Verify Operation of Custom CTLE

Run the simulation.

5 Customize SerDes Systems

5-32

 Implement Custom CTLE in SerDes Toolbox PassThrough Block

5-33

To evaluate the effect of the CTLE on output waveforms, open the SerDes IBIS-AMI manager dialog
box. In the AMI-Rx tab, set Current value of CTLEMode* parameter to 1 to use fixed mode
operation, and set Current value of CTLEConfigSelect* parameter to 4. Re-run the simulation.

5 Customize SerDes Systems

5-34

 Implement Custom CTLE in SerDes Toolbox PassThrough Block

5-35

See Also
PassThrough | Configuration | CTLE | SerDes Designer

More About
• “Customizing Datapath Building Blocks” on page 5-14
• “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-27

5 Customize SerDes Systems

5-36

Step Response Based CTLE

This example shows how to create a custom step response-based CTLE block in Simulink® to model
wired communication links of your own specifications. The custom CTLE block exhibits equivalent
behavior as the default pole/zero based CTLE block from the SerDes Toolbox™. This example also
illustrates:

• how to use the MATLAB function blocks to model custom algorithms in Simulink,
• how to include large data files into your model,
• how to create custom Initialization Subsystem algorithms to perform Init (impulse based)

optimization before the Simulink simulation starts, and
• how to validate the model using the Simulation Data Inspector.

The first time you call the step response-based CTLE, it loads a data table in the memory. The data
table contains a reference step response for each filter configuration. The CTLE resamples or
interpolates the step response to the simulation time step, differentiates the step to obtain the
impulse response, and then convolves this with the input waveform. It is easier to resample step
response than impulse response due to the difficulty of properly capturing the peak of an impulse
response.

Characterize CTLE with Step Responses

Typically, the data table with the reference step responses is obtained from circuit simulations. But
for this example, extract the step response from the default CTLE from the SerDes Toolbox to
characterize its behavior. It is important to ensure that the time step of the characterization data is
fine enough so that all relevant step response behavior is captured. Use 32 samples per symbol,
which results in a time step size of 3.125 ps and is more than sufficient for this CTLE.

Create a CTLE object with the default peaking characteristics.

SymbolTime = 100e-12;
SamplesPerSymbol = 32;
dt = SymbolTime/SamplesPerSymbol;

CTLE1 = serdes.CTLE(...
 'SymbolTime',SymbolTime,... %Duration of a single symbol
 'SampleInterval',dt,... %time step size
 'DCGain',0:-1:-8,... %DC Gain
 'PeakingGain',0:8,... %Peaking Gain
 'PeakingFrequency',5e9,... %Peaking Frequency
 'Mode',1); %Mode is fixed

For each configuration of the CTLE, stimulate the CTLE with an ideal step response excitation to
extract the reference CTLE step responses and observe the output waveforms.

stimulus = ones(25*SamplesPerSymbol,1);
stimulus(1:SamplesPerSymbol) = 0;

numberOfConfig = CTLE1.ConfigCount;

stepResponse = zeros(length(stimulus),numberOfConfig);
for ii = 1:numberOfConfig
 CTLE1.ConfigSelect = ii-1;

 Step Response Based CTLE

5-37

 release(CTLE1);
 stepResponse(:,ii) = CTLE1(stimulus);
end

t1 = dt*(0:size(stepResponse,1)-1);

figure,
plot(t1,stepResponse)
xlabel('time [s]'),ylabel('[V]')
title('CTLE Step responses')
legend(cellstr(num2str((0:(numberOfConfig-1))')))
grid on

Finally save the matrix of step responses, 'stepResponse', and the sample interval, 'dt', to a .mat file.
Observe that each column of the matrix represents a different CTLE configuration. This example uses
the filename 'myCTLEdata.mat' for the data. If you change the file name, then you also need to
manually update the file references in the stepCTLE.m function and the Simulink Initialize Subsystem
references.

If you already have your own CTLE behavior recorded from circuit simulations, you can put the data
into the same file format as below, with the fields 'stepResponse' and 'dt' equivalently set. If your own
CTLE is characterized by impulse responses, you can use the function impulse2step to first convert
them to step responses.

Create the reference data file.

save('myCTLEdata.mat','stepResponse','dt')

5 Customize SerDes Systems

5-38

Create SerDes System Model

Use the SerDes Designer App to create a receiver model with a Pass Through and a CTLE block. This
setup allows for a straightforward validation process to show that the step response based CTLE has
the same behavior as the pole/zero based CTLE.

Open the SerDes Designer app.

>> serdesDesigner

Add a Passthrough block and rename it to 'StepCTLE'

Add a CTLE block.

Select the Channel block to open its Block Parameters dialog box. Include crosstalk by selecting
Enable Crosstalk parameter. Having crosstalk enabled ensures that the impulse response matrix
input to Init will have multiple columns during testing and so any custom Init code will need to
correctly process multi-dimensional arrays. Ensuring proper behavior here will avoid later issues
when the model is exported to IBIS-AMI.

Export the SerDes system to Simulink.

Setup Simulink Model

Modify the Simulink model to include the MATLAB function block and parameters to control the
custom CTLE block. Open the Block Parameters dialog box for the Configuration block, then click on
the Open SerDes IBIS-AMI Manager button and select the AMI-Rx tab. Under the Model_Specific
parameter, select StepCTLE and click the Add Parameter… button. In the newly opened window, set
Parameter name to Mode, Usage to In, Type to Integer, Format to List, List values to [2 0 1], and
List_Tip values to ["adapt" "off" "fixed"].

Select StepCTLE under the Model_Specific parameter again and click the Add Parameter… button. In
the newly opened window, set Parameter name to ConfigSelect, Usage to InOut, Type to Integer,
Format to List, and List values to [0 1 2 3 4 5 6 7 8].

With the inclusion of the above parameters, the Simulink model view shows the StepCTLE subsystem
in the StepCTLE window.

Add a MATLAB Function block to the StepCTLE subsystem and open it.

Copy the contents of the file stepCTLE.m in the MATLAB Function block.

 Step Response Based CTLE

5-39

To associate the Model Workspace variable SampleInterval to the function input
SampleInterval, set SampleInterval to be a parameter with the Symbols pane and Property
Inspector.

1 Open the MATLAB Function Block Editor.
2 In Modeling tab, in the Design section, click Symbols Pane.
3 Open the Property Inspector. Right-click on the SampleInterval and click Inspect.
4 Change the Scope to Parameter.

stepCTLE Function

The stepCTLE function has two primary behaviors:

• It loads the step response data, resamples it according to the simulation sample interval, and
differentiates the step response to obtain the impulse response.

• It filters (or convolves) the incoming waveform with the impulse response.

The first primary behavior is essential so that the stepCTLE has consistent behavior over changes in
the simulation time step size.

Persistent Variables

Observe that this function utilizes persistent variables. Persistent variables have permanent
storage in MATLAB similar to global variables. But unlike global variables, persistent variables are
known only to the function that declares them. In a Simulink model, each MATLAB function block
contains its own copy of persistent data. If a MATLAB function that contains a persistent variable is
called from two different blocks, the model has two persistent variables. Also, each run of the
simulation creates a new copy of the persistent data.

Using coder.load to Including Data Files into Model

Observe the use of the coder.load function instead of the 'load' function to access the data in the .mat
file. When this code is compiled, the data in the .mat file will be hard coded into the executable and is
an excellent way of including large data files into the model.

Connectivity

From Simulink, connect the parameter blocks to the MATLAB function block. Delete the ConfigSelect
write block as it will not be used. Also delete the Pass Through System object block.

Add a display block from the Simulink Library Browser to observe the adapted value of ConfigSelect
parameter. To observe the adapted ConfigSelect parameter of the SerDes Toolbox CTLE, also add a
display block under the CTLE mask. You can then verify that both blocks adapt to the same
configuration select.

5 Customize SerDes Systems

5-40

https://www.mathworks.com/help/coder/ref/coder.load.html

Setup Init

The SerDes Simulink model can perform Init (impulse-based) analysis before the zero simulation time
with the Initialize Subsystem block. Open the Init block in the Rx subsystem. Click the Refresh Init
button and then the Show Init button to bring up the MATLAB Editor. Disregard any warning
messages about refresh Init skipping the MATLAB Function block.

Cut and paste the contents of CustomUserCodeForInit.m in the custom user code area of the Init
function.

Observe that like in the stepCTLE function, this code loads the step response data file, then
resamples it and converts to impulse responses. This code additionally performs optimization to
select which of the many CTLE configurations 'best' equalizes the signal using the SNR metric as the
goodness criteria. Once the ConfigSelect has been determined, the CTLE response is applied to the
primary impulse and crosstalk impulse responses.

An alternative to using MATLAB function blocks is to use System object™. System objects do not
require the use of persistent variables (which are not currently allowed in the Initialize Subsystem
block) and allow for better code sharing between the Simulink model version of a block and the
Initialize subsystem version of the block like many of the System objects in the SerDes Toolbox. For
more information on System objects, see “What Are System Objects?”.

Validation

To validate that the step response based CTLE is equivalent to the default CTLE from the SerDes
Toolbox, log the output waveform and perform two simulations:

• Enable the step based CTLE and disable the pole/zero based CTLE
• Disable the step based CTLE and enable the pole/zero based CTLE

The top level output waveform of the model is already logged (as shown by the broadcast or wifi
symbol) for use by the post-simulation analysis results.

 Step Response Based CTLE

5-41

Open the SerDes IBIS-AMI Manager dialog box from Configuration block. Set the Mode of the pole/
zero based CTLE's to off. Set the Mode of the step based CTLE to adapt and run the simulation.

Then set the Mode of the pole/zero based CTLE's to adapt. Set the Mode of the step based CTLE to
off and rerun the simulation

From the Simulink toolstrip, click the Data Inspector button from the Simulation tab. Change the line
color of the most recent simulation results and zoom in on the first few symbols of the simulation.
Observe how the only difference between the waveforms is a one symbol delay thus validating the
accuracy of the step response based CTLE. The one symbol-time delay is due to the step response
characterization data and while this can be removed, it doesn't make a large impact on SerDes
simulations or analysis.

5 Customize SerDes Systems

5-42

 Step Response Based CTLE

5-43

Customize IBIS-AMI Models

• “Managing AMI Parameters” on page 6-2
• “Design IBIS-AMI Models to Support Clock Forwarding” on page 6-18
• “Design IBIS-AMI Models to Support DC Offset” on page 6-32
• “Simulate Crosstalk Cancellation in IBIS AMI Receiver Models” on page 6-40

6

Managing AMI Parameters

This example shows how to add, delete, modify, rename and hide AMI parameters for an IBIS-AMI
model built with SerDes Toolbox. These AMI parameters are then available to be used with existing
datapath blocks, user-created MATLAB function blocks or optimization control loop, and can be
passed to or returned from the AMI model executables (DLLs) created by SerDes Toolbox.

Example Setup

This example will be adding a new InOut Parameter 'Count' alongside the Pass-through datapath
block. This parameter will count the number of passes through AMI_Init (which should be 1), then
pass the result to AMI_GetWave where it will continue to count the total number of passes. While this
may not be especially useful functionality for AMI model development, it will serve to demonstrate
how new AMI parameters are added and used during model generation.

Inspect the Model

This example starts with a simple receiver model that only uses a pass-through block.

open_system('serdes_add_param.slx')

This Simulink SerDes System consists of Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

• The Tx subsystem has the FFE datapath block to model the time domain portion of the AMI model
and an Init block to model the statistical portion. The Tx subsystem will not be used in this
example.

• The Analog Channel block has the parameter values for Target frequency, Loss, Impedance and
Tx/Rx analog model parameters.

• The Rx subsystem has the Pass-Through datapath block and an Init block to model the statistical
portion of the AMI model.

Run the Model

Run the model to verify that the base configuration is working as expected before editing. Two plots
are generated. The first is a live time domain (GetWave) eye diagram that is updated as the model is
running.

6 Customize IBIS-AMI Models

6-2

The second plot contains views of the results from statistical (Init) and time domain (GetWave)
simulation.

 Managing AMI Parameters

6-3

How to Add a new Parameter

Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button and select the AMI-Rx tab.

1. Highlight the PT datapath block and press Add Parameter...

2. Change the Parameter Name to: Count

3. Verify that the Current value is set to 0 (this will be the starting point for our count).

6 Customize IBIS-AMI Models

6-4

4. In the Description, type: Starting value of iteration count.

There are four possible values for Usage:

• In: These parameters are required inputs to the AMI Executable.
• Out: These parameters are output from the AMI_Init and/or AMI_GetWave functions and returned

to the EDA tool.
• InOut: These parameters are required inputs to the AMI Executable and can also return values

from AMI_Init and/or AMI_GetWave to the EDA tool.
• Info: These parameters are information for the User and/or the simulation tool and are not used

by the model.

5. Set the Usage to: InOut

There are six possible parameter Types:

• Float: A floating point number.
• Integer: Integer numbers without a fractional or decimal component.
• UI: Unit Interval (the inverse of the data rate frequency).
• Tap: A floating point number for use by Tx FFE and Rx DFE delay lines.
• Boolean: True and False values, without quotation marks.
• String: A sequence of ASCII characters enclosed in quotation marks.

6. Set the Type to: Integer

There are three possible parameter Formats:

• Value: A single data value.
• List: A discrete set of values from which the user may select one value.
• Range: A continuous range for which the user may select any value between Min and Max.

7. Set the Format to: Value

8. Click OK to create the new parameter, then you will see the new blocks automatically placed on
the canvas.

Accessing a new Parameter from the Initialize Function

New parameters are accessed from the Initialize function (for statistical analysis) through the
impulseEqualization MATLAB function block. This example has added an InOut parameter. To use the
new InOut Parameter 'Count' in AMI_Init:

1. Inside the Rx subsystem, double click on the Init block to open the mask.

2. Press the Refresh Init button to propagate the new AMI parameter(s) to the initialize subsystem.

3. Click OK to close the mask.

4. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

The impulseEqualization MATLAB function block is an automatically generated function which
provides the impulse response processing of the SerDes system block (IBIS-AMI Init).

 Managing AMI Parameters

6-5

Note that the new Count parameter has been automatically added as an output of this MATLAB
function as a Data Store Write block. No Data Store Read is required because the input parameters
are passed in as a PTSignal Simulink.Parameter.

5. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB. The '%% BEGIN:' and '% END:' lines within this function block denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

% END: Custom user code area (retained when 'Refresh Init' button is
pressed)

When Refresh Init was run, it added our new parameter to the Custom user code area so that it can
be used as needed:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed) PTCount = PTParameter.Count; % User added AMI parameter from
SerDes IBIS-AMI Manager % END: Custom user code area (retained when
'Refresh Init' button is pressed)

6. To add our custom code, scroll down to the Custom user code section, then enter PTCount =
PTCount + 1; The Custom user code section should look like this:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed) PTCount = PTParameter.Count; % User added AMI parameter from
SerDes IBIS-AMI Manager PTCount = PTCount + 1; % Count each iteration
through this function. % END: Custom user code area (retained when
'Refresh Init' button is pressed)

7. Save the updated MATLAB function, then run the Simulink project to test the new code. Using the
Simulation Data Inspector, verify that the value of Count after Init is now '1'.

Note that the final value for Count was written to the PTSignal data store so that it is now available in
AMI_GetWave.

6 Customize IBIS-AMI Models

6-6

How Usage affects Parameters in Init

Depending on what Usage was selected, parameters show up in the Custom User code area of the
impulseEqualization MATLAB function block in different ways:

Info Parameters

Info parameters are informational for the user or simulation tool and are not passed to, or used by the
model, therefore they will not show up in the Initialize code.

In Parameters

In parameters are Simulink.Parameter objects that show up as a constant that can be used as needed.
For example, an In parameter named 'InParam' that was added to the VGA block would show up as
follows:

VGAParameter.InParam; % User added AMI parameter from SerDes IBIS-AMI
Manager

Out Parameters

Out parameters are Simulink.Signal objects that show up as a parameter with the initial value defined
in the IBIS-AMI Manager. For example, an Out parameter named 'OutParam' that was added to the
VGA block with a current value of '2' would show up as follows:

VGAOutParam=2; % User added AMI parameter from SerDes IBIS-AMI Manager

Output parameters use a Data Store Write block to store values for passing out of Init to the EDA tool
(via the AMI_Parameters_Out string) and for use in GetWave (if desired). In the above example, a
Data Store Write block named 'OutParam' was automatically added to the Initialize Function:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. For example,
an InOut parameter named 'InOutParam' that was added to the VGA block would show up as follows:

VGAInOutParam = VGAParameter.InOutParam; % User added AMI parameter
from SerDes IBIS-AMI Manager

The Input value is accessed by using the Simulink.Parameter reference VGAParameter.InOutParam,
while the output value uses a Data Store Write block to store values. In the above example, a Data
Store Write block named 'InOutParam' was automatically added to the Initialize Function for passing
values out of Init to the EDA tool (via the AMI_Parameters_Out string) and for use in GetWave (if
desired):

 Managing AMI Parameters

6-7

Accessing a new Parameter from the GetWave Function

New parameters are automatically created as blocks of type Constant, Data Store Read or Data Store
Write and added to the canvas of a datapath block. This example has added an InOut parameter. To
use the new InOut Parameter 'Count' in GetWave:

1. Inside the Rx subsystem, click on the Pass-Through datapath block and type Ctrl-U to look under
the Pass-Through mask.

2. Add a Simulink/Math Operations Sum block to the canvas.

3. Add a Simulink/Sources Constant block to the canvas and set the value to 1.

4. Wire up each of the elements so that the Pass Through block now looks like the following:

6 Customize IBIS-AMI Models

6-8

7. Save, then run the Simulink project to test the new code.

By adding Value Labels to the output port of the Sum block, see that the value of Count after GetWave
is 3.2e+04 (Samples Per Symbol * Number of symbols). After generating AMI model executables, the
value of Count will be available in the Parameters out string in an AMI simulator.

How Usage affects Parameters in GetWave

New parameters are accessed from the GetWave function in different ways, depending on what Usage
was selected.

Info Parameters

Info parameters are informational for the user or simulation tool and cannot be used by the model.

In Parameters

In parameters are Simulink.Parameter objects that are used by adding a Constant block. For example,
an In parameter named 'InParam' that was added to the Rx VGA block can be accessed by any of the
Rx blocks by adding a Constant block like this:

For more information, see “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2.

Out Parameters

Out parameters are Simulink.Signal objects that use a Data Store Write block to store values for
passing out of GetWave to the EDA tool (via the AMI_Parameters_Out string) or to other Rx blocks.

 Managing AMI Parameters

6-9

For example, an Out parameter named 'OutParam' that was added to the Rx VGA block can be written
to with a Data Store Write block like this:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. The Input value
can be accessed with either a constant block or with a Data Store Read block, while the output value
uses a Data Store Write block to store values for passing out of GetWave to the EDA tool (via the
AMI_Parameters_Out string) or to other Rx blocks. For example, if an InOut parameter named
'InOutParam' is added to the Rx VGA block, the initial Input value can be accessed by any Rx block by
adding a Constant block like this:

Alternately, the updated Input value can be accessed with a Data Store Read block like this:

The output value can be written to with a Data Store Write block like this:

How to Rename a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be renamed.

User generated AMI parameters are renamed as follows.

Update the AMI Parameters

6 Customize IBIS-AMI Models

6-10

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be renamed and press Edit...

4. In the Parameter name field, changed the name as desired.

5. Click OK, then you will see the new parameters automatically renamed on the canvas.

Update Init

1. Push into either the Tx or Rx subsystem block where the parameter is used.

2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to propagate the AMI parameter name change to the initialize
subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

6. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

7. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

8. You can confirm all instances of the parameter have been renamed.

9. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the renamed parameter was used and rename each instance of
the parameter.

Verify Results

Run a simulation to verify that the project still operates with no errors or warnings.

How to Delete a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be deleted.

User generated AMI parameters are deleted as follows.

Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

 Managing AMI Parameters

6-11

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be deleted and press Delete Parameter.

4. You will see the paramter blocks automatically removed from the canvas.

Update Init

Note: Parameters in the custom user code area are not automatically removed, so you will comment
or delete them with the following steps:

1. Push into either the Tx or Rx subsystem block where the parameter was used.

2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to remove any deleted Out or InOut parameter Data Stores from the
initialize subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask

6. Double-click on the initialize block to open the Initialize Function.

7. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

8. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

9. Delete or comment out all instances of the removed parameter.

10. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the removed parameter was used and delete each instance of
the parameter.

Verify Results

Run a simulation to verify that the project still operates with no errors or warnings.

How to Hide a Parameter

There may be times when a parameter is required for model functionality, but needs to be hidden
from the user. For example, to keep a user from changing the FFE mode, edit the FFE mode
parameter and check the "Hidden" checkbox.

6 Customize IBIS-AMI Models

6-12

This will prevent this parameter from being present in the .ami file - effectively hardcoding the
parameter to its default value. In other words, the FFE mode parameter is still present in the code so
that the FFE continues to work as expected, but the user can no longer change the value.

To hide a parameter from both Init and GetWave:

1. Open the mask by double-clicking on the datapath block of interest.

2. Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

3. Deselect the parameter(s) to be hidden.

A few things to keep in mind about hiding parameters:

• When hiding parameters, verify that the current parameter value(s) are correct. The current value
will now always be used as the default value for that parameter.

• Hiding a parameter has no effect on the model executable. It only removes the parameter from the
generated .ami file.

 Managing AMI Parameters

6-13

• If the hidden parameter is of type Out or InOut, it will still show up in the AMI_Parameters_Out
string of the model executable.

How to Modify a Parameter

All the parameters used in SerDes Toolbox are modified via the SerDes IBIS-AMI Manager dialog by
using the Edit... button. However, the parameter values that can be modified vary depending on
which type of parameters they are.

For the built-in System Objects, only the following fields can be modified:

• Current Value
• Description
• Format
• Default
• List values (for Format List)
• Typ/Min/Max values (for Format Range)

For the user defined parameters all fields can be modified.

Add Reserved Parameters for Jitter, Analog Buffer Modeling, and Data Management

Reserved AMI parameters include:

• Jitter and noise parameters such as Tx_Rj, Tx_Dj, Tx_DCD, Rx_Rj, Rx_Dj, Rx_DCD,
Rx_GausianNoise, and others

• Analog buffer modeling parameters such as Ts4file, TX_V, and RX_R
• Data management using DLL_ID

These are post-processing parameters that are used by an IBIS-AMI compliant simulator to modify
the simulation results accordingly. These parameters are added via the SerDes IBIS-AMI Manager
dialog by using the Reserved Parameters... button on the AMI-Tx or AMI-Rx tabs.

Note: The reserved parameter AMI_Version will automatically change to 7.0 if any IBIS 7.0 reserved
parameters are enabled in the IBIS-AMI Manager.

Note: Some of the reserved parameters only effects the exported IBIS-AMI model and is not included
in Simulink simulation results. For more information, see “Customize AMI Parameters” on page 1-17.

For example, to add Rx_Receiver_Sensitivity and Rx_Dj to a receiver .ami file, click the Reserved
Parameters... button to bring up the Rx Add/Remove Jitter&Noise dialog, select the
Rx_Receiver_Sensitivity and Rx_Dj boxes, then click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file.

To set the values for these two new parameters:

• Select Rx_Receiver_Sensitivity, then click the Edit... button to open the Add/Edit AMI
Parameter dialog.

• Set the Current Value to 0.04
• Change the Format to Value.
• Click OK to save the changes.

6 Customize IBIS-AMI Models

6-14

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.05
• Set the Min value to 0.0
• Set the Max value to 0.1
• Click OK to save the changes.

These two parameters will appear in the Reserved_Parameters section of the .ami file as shown:

(Rx_Receiver_Sensitivity (Usage Info)(Type Float)(Value 0.04))

(Rx_Dj (Usage Info) (Type UI) (Range 0.05 0.0 0.01))

For another example, you can use Touchstone files (also known as SnP files) to customize analog
buffer modeling of a transmitter or receiver. This option can be enabled using the reserved parameter
Ts4file in the IBIS AMI Manager.

 Managing AMI Parameters

6-15

When you click the Export button in the IBIS AMI Manager, a dialog will appear where you can
select the s-parameter files for each process-corner model to support the reserved parameter Ts4file.

6 Customize IBIS-AMI Models

6-16

For more information on IBIS reserved parameters see the IBIS specification.

References

IBIS 7.0 Specification

See Also
SerDes Designer | FFE | PassThrough

More About
• “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

 Managing AMI Parameters

6-17

https://ibis.org/ver7.0/ver7_0.pdf

Design IBIS-AMI Models to Support Clock Forwarding

This example shows how to create Rx AMI models that support clock forwarding as defined in the
IBIS 7.1 specification by modifying the library blocks in SerDes Toolbox™. This example will use a
DDR5 write transfer (Controller to SDRAM) to demonstrate the setup.

Background

The IBIS 7.1 specification adds the ability pass in an external clock signal, either as a waveform or
clock-times, to a data IBIS-AMI receiver GetWave model, using the clock_times pointer as defined
in the IBIS specification. A new AMI Reserved Parameter, Rx_Use_Clock_Input, is used to enable
this functionality.

The figure below shows a typical DDR5 coupled channel simulation setup using clock-forwarding. The
clock times or waveform generated by DQS0 is passed to DQ[7:0] using the DQ DLL’s clock_times
pointer. The DQ DLL then operates on these clock times as desired (for example triggering DFE taps,
modelling the DQS delay tree or centering the DQ on the DQS waveform) and then passes out the
same or modified clock_times as usual. This same process is repeated for DQS1 and DQ[8:15].

6 Customize IBIS-AMI Models

6-18

This example provides an introduction to clock-forwarding in SerDes Toolbox and show how to use
various Simulink® tools and MATLAB® functions to generate and test an IBIS-AMI executable that
supports clock-forwarding. It does not provide a specific clock-forwarding algorithm.

Rx IBIS-AMI Model Setup in Simulink

To begin, load the clock forwarding Simulink model and review the model setup. Start by typing the
following command:

>> open_system('dq_clock_forward.slx')

This will bring up the following SerDes system:

Review Simulink Model Setup

In addition to the normal SerDes Configuration, Stimulus, Tx, Analog Channel and Rx blocks, this
Simulink SerDes system adds a new Strobe Clock Times Generator block. The setup of each of these
blocks will be reviewed below.

Configuration Block

• Symbol Time is set to 200.0 ps (5.0Gbps)
• Target BER is set to 1e-16.
• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ

(nonreturn to zero), respectively.

Stimulus Block

• The Stimulus block has been modified to point to the custom stimulus pattern
SILinkStimulus_dq.

Tx Block

The Tx block uses a single FFE with 5 taps. Since this example is focused on the Rx model, the Tx
block will be untouched.

Analog Channel Block

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.5 GHz, which is the Nyquist frequency for 5.0 GHz

 Design IBIS-AMI Models to Support Clock Forwarding

6-19

• The Tx Analog model is set up so that Voltage is 1.1 V, Rise time is 10 ps, R (output resistance)
is 50 ohms, and C (capacitance) is 0.65pF.

• The Rx Analog model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF.

Rx Block

The single Rx block is a pass-through block that consists of a DFE System Object, a CDR MATLAB
function block and a Clock Times block. The DFE block is set up for four DFE taps. The first tap has
the Initial tap weight set to -0.1 (so it's visible in simulation), while the remaining Initial tap
weights are set to 0. The Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V, and the
Maximum tap value is set to [0.05 0.075 0.06 0.045] V.

Per the IBIS 7.1 specification, the clock times received by a clock-forwarding data receiver are used
directly, therefore there no clock recovery is required when Rx_Use_Clock_Input is set to "Times" or
"Wave". In place of the CDR, a MATLAB function block named forwardCDR is used to pass the clock
times to the DFE, which signals when to apply the DFE taps. In addition, this block passes the clock
times, unchanged, to the IBIS-AMI clock_times block to generate the normal clock times for use by
the EDA tool. The MATLAB function block can be copy-pasted from this example into your own
Simulink model.

The Clock Times block is a SerDes Toolbox library block which formats the clock-times generated by
the DFECDR, CDR or forwardCDR block for output to the EDA tool. This library block is available
from the Simulink Library Browser.

The DFE block is a custom SerDes Toolbox system object. It can be added to your own Simulink
model by adding a MATLAB System block and then pointing it to the DFE.m file included in this
example.

The CDR block is a standard SerDes Toolbox system object. When Rx_Use_Clock_Input is set to
"None", the CDR outputs clock-times for the Clock Times library block. This is selected by the
Forward Clock Times Data Store Read block and the four Switch blocks. Note that the CDR block is
required in order for the model to output clock-times per the IBIS-AMI specification when clock
forwarding is not being used.

Strobe Clock Times Generator Sub-System

The Strobe Clock Times Generator Block either reads a named clock stimulus pattern stored in the
Model Workspace or reads in an array of clock times named clockTicks which is also stored in the
Model Workspace. The mask for this sub-system is used to select which input to use and to set the
name of the external clock stimulus pattern.

6 Customize IBIS-AMI Models

6-20

You can add the Strobe Clock Times Generator subsystem to a new Simulink model by copying it from
this example. Copying this subsystem into a new SerDes model will also add the required
Rx_Use_Clock_Input parameters and ForwardClockOffset Simulink signal to the Model
Workspace.

Run the Simulink Model

The Simulink model is ready to run. In order to make the effects of the clock location more visible,
the first DFE tap has been set to -0.1V and the DFE mode is set to Fixed. Press the run button to
launch the simulation.

As the simulation runs, the Time Domain eye diagram gets constantly updated:

 Design IBIS-AMI Models to Support Clock Forwarding

6-21

After the simulation is complete, the Init Statistical and Time Domain Analysis Results plot becomes
available:

6 Customize IBIS-AMI Models

6-22

Note that since clock-forwarding only affects the Time Domain results, the Statistical results does not
reflect the effects of clock-forwarding.

How to visualize results

To verify proper operation of clock-forwarding, plotting the resulting waveforms and/or clock-ticks
can be very helpful. Several signals have data logging turned on to enable the use of the Data
Inspector for plotting waveforms. To turn on additional data logging, right-click on any signal and
select Log Selected Signals.

 Design IBIS-AMI Models to Support Clock Forwarding

6-23

Plotting clock and data waveforms

After running a simulation open the Data Inspector by clicking on the -icon in the Simulink
Simulation tab. In the Data Inspector check the boxes for Stimulus:1 (the incoming stimulus
waveform, Red in the figure below) and for rxOut (the Rx data out waveform, blue in the figure
below). You should see that rising and falling edges of the external-clock waveform (Red) correspond
with the peaks of the data waveform (Blue). If they do not line up as expected, the offset can be
adjusted by using the clock offset (see Setting the clock offset on page 6-28).

6 Customize IBIS-AMI Models

6-24

Plotting clock-ticks in and out

After running a simulation, in the Data Inspector check the boxes for Forward Clock Times:1 (the
external clock-times from the Clock Times Generator block) and clockTime (the clock-times being
passed out of the Rx model). When “Times” is selected as the external clock times, these two signals
are expected to be identical.

Changing the data pattern

The Rx Data pattern is set using the Stimulus block of the SerDes system as usual. A PRBS pattern
can be selected, or a named stimulus pattern that lives in the model workspace can be used. The
current stimulus pattern is named SILinkStimulus_dq.

 Design IBIS-AMI Models to Support Clock Forwarding

6-25

Changing the clock pattern

Two clock patterns are included in this Simulink model:

• SILinkStimulus_ck: This is a periodic clock pattern generated by Parallel Link Designer (in
Signal Integrity Toolbox)

• SILinkStimulus_dqs: This is a DQS pattern with an 8-bit DDR burst followed by a 4-bit static
low.

To change this pattern, specify the desired pattern by name in the Strobe Clock Times Generator
mask.

To create a new pattern, see Creating a new clock waveform on page 6-26.

Switching between an external waveform and clock ticks

Switching between using an external waveform to generate clock times to using an external clock
ticks array directly is accomplished by changing the value of the parameter Rx_Use_Clock_Input
from the Strobe Clock Times Generator mask. There are 3 options for External Clock Input:

• None: The Rx AMI model uses it's built-in CDR to generate clock times.
• Times: Use the external clock times given in the Model Workspace parameter clockTicks.
• Wave: Use the external clock waveform from the Waveform Name in the mask.

Creating a new clock waveform

Generating a new clock or strobe waveform for use in the Stimulus block inside the Strobe Clock
Times Generator is accomplished using Parallel Link Designer (part of Signal Integrity Toolbox) and
Signal Integrity Link. Note that since you are only interested in creating a stimulus pattern, any AMI
model can be used for this process. The following steps assume you are using the
dq_clock_forward model from this example, however the dqs_clock_forward model can be used
as well.

Here is an overview of the required steps. For additional information on using Signal Integrity Link,
see “Signal Integrity Link” on page 3-11. Note that if you have previously run Signal Integrity Link on
this Simulink model you can begin with step 3.

1 Start by using the SerDes IBIS-AMI Manager to export the Tx and Rx models. Make sure that the
IBIS file, AMI files and DLL files boxes are checked.

2 Use Signal Integrity Link to Create a new Parallel Link Designer project.
3 In the new Parallel Link Designer project, double-click on the Tx designator then press the IO

Stimulus button in the Designator Element Properties dialog.
4 In the Stimuli dialog, press the New button to open the Stimulus Editor and create the desired

clock pattern. For example, you can set a continuous-clock pattern that repeats, or a burst-strobe
pattern that starts and stops.

5 When you are done creating a new stimulus, make sure the new named stimulus pattern is
selected in Designator Element Properties.

6 Use the Simulation Parameters dialog to set the desired Samples Per Bit, Record Start and
Record Bits values to capture the desired number of samples. For example, to record 32,000
samples, set Samples Per Bit to 32, Record Start to 0UI, and Record Bits to 10,000UI,
making sure that Time Domain Stop is >= 10,000UI. Note: Number of samples = Samples Per
Bit * Record Bits.

6 Customize IBIS-AMI Models

6-26

7 Run the Parallel Link Designer simulation to generate the new Stimulus pattern.
8 In Signal Integrity Link, in the Import parallel link project section, select the proper

simulation. The Stimulus pattern box is must be checked. Then click the Import parallel link
project button.

9 Back in Simulink, the new stimulus pattern will automatically be set in the top-level Stimulus
block. Change this pattern back to either PRBS or SILinkStimulus_dq as was previously set.

10 In the Stimulus block inside the Strobe Clock Times Generator, select the newly created stimulus
SILinkStimulus.

Note: The SILinkStimulus pattern is over-written each time this process is performed. To save a
named stimulus pattern, open the Model Explorer, browse to the Model Workspace and rename
SILinkStimulus to a new name. This re-named parameter is saved along with the rest of the Simulink
model.

Creating new clock ticks

Generating new clock ticks for use inside the Strobe Clock Times Generator is accomplished using
Parallel Link Designer (part of Signal Integrity Toolbox) and Signal Integrity Link. Unlike with the
new clock waveform process above, here it is recommended to use the actual Clock or Strobe AMI
model. The following steps assume you are using the dqs_clock_forward model included with this
example. For more information on the Clock/Strobe model see Strobe Rx IBIS-AMI Model
Requirements on page 6-30.

Here is an overview of the required steps. Note that if you have previously run Signal Integrity Link
on the dqs_clock_forward Simulink model you can begin with step 3.

1 Start by using the SerDes IBIS-AMI Manager to export the Tx and Rx models. Make sure that the
IBIS file, AMI files and DLL files boxes are checked.

2 Use Signal Integrity Link to Create a new Parallel Link Designer project.
3 In the new Parallel Link Designer project open the Simulation Parameters dialog and set the

parameter Output Clock Ticks to Yes.
4 <Optional>: While you can run the simulation using the default setup from Signal Integrity Link,

it is recommended that you set up a widebus simulation with a realistic topology that includes
both the dq_clock_forward and the dqs_clock_forward models.

5 Run the desired Parallel Link Designer simulation.
6 From the MATLAB command line, type the following to import the clock times out of your Parallel

Link Designer project and format them for use in Simulink. Note: Make sure to point the Clock/
Strobe designator name and not the Data designator name.

%% Read the Parallel Link Designer generated clock_ticks from a file
filename = '<path_to_pld_project>/<project_name>/interfaces/<interface_name>/pre_sims/<sheet_name>/default.ssm/qcd/<designator>_ttte.td.<designator>_z.clock_ticks.csv';
csv = readmatrix(filename,'Range','A7');

%% Format input
count = csv(:,1);
clock = csv(:,2);

%% Output clock_ticks for Simulink
clockTicks = [count, clock];

 Design IBIS-AMI Models to Support Clock Forwarding

6-27

Note: If you wish to save multiple clockTicks arrays, or switch between arrays, you need to update
the clockTicks parameter name in the clockTimesGen MATLAB function block inside the Strobe
Clock Times Generator sub-system.

Setting the clock offset

The Input AMI parameter ForwardClockOffset has been added to the DFEandCDR block. This
parameter is of type Integer, with a Default of 0 and a Range of 0 to 256. In the DFEandCDR block,
this parameter controls a Delay block which is used to delay the incoming clock times by up to 256
samples. Using the SerDes IBIS-AMI Manager you can use this delay to adjust the location of the
external clock with respect to the data waveform as desired.

For example, here is the time domain eye diagram with Select External Clock Input set to Wave
and ForwardClockOffset set to 5:

Note how the DFE taps are being applied in the center of the eye instead of at the edges of the eye.
With the ForwardClockOffset delay set to 14, the DFE taps are being applied at the ideal location at
the edge of the eye:

6 Customize IBIS-AMI Models

6-28

Note: Delay values less that 0 will have no effect on the resulting waveform.

Changing the current value of Rx_Use_Clock_Input

The operation of the clock forwarding is controlled by the reserved AMI parameter
Use_AMI_Clock_PDF. Changing the current value of this parameter is not supported by the SerDes
IBIS-AMI Manager, so all updates to the current value are done from the Strobe Clock Times
Generator mask using the Select External Clock Input radio buttons.

Note: If the IBIS-AMI Manager is already open, you may need to close and re-open for the changes to
be visible.

Generate Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant model executables, IBIS and AMI files for the clock forwarding receiver.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button.

Required Keywords

The IBIS-AMI Reserved input parameter Rx_Use_Clock_Input is required for codegen to work
properly. If this parameter is not present in your model, while the model may codegen the clock-
forwarding properties will not be enabled.

 Design IBIS-AMI Models to Support Clock Forwarding

6-29

Export Models

On the Export tab in the SerDes IBIS/AMI manager dialog box.

• Update the Rx model name to clock_forward_dq_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for the Rx AMI Model Settings. This will create a model

executable that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Rx model Bits to ignore value to 10 to allow enough time for the external clock

waveform to settle during time domain simulations.
• Set Models to export to Rx only since we are only generating a Rx model.
• Set the IBIS file name to be clock_forwarding.ibs
• Press the Export button to generate models in the Target directory.

Review AMI file

The resulting Rx AMI file will look like a normal Rx AMI file with two exceptions. First, the
AMI_Version is set to 7.1, while the second is the inclusion of the reserved parameter
Rx_Use_Clock_Input.

Model Limitations

This clock forwarding AMI model requires an EDA tool that supports the new IBIS 7.1 reserved
parameter Rx_Use_Clock_Input.

Per the IBIS 7.1 specification, it is intended that Data and Strobe AMI models will be delivered as a
matched pair. This may place additional requirements on the Strobe AMI model which are discussed
in the next section.

Strobe Rx IBIS-AMI Model Requirements

Per the IBIS 7.1 specification, it is intended that Data and Strobe AMI models will be delivered as a
matched pair. This means that a Strobe (or Clock) AMI model will also need to be generated for use
along with this Data AMI model. The Strobe model should not use a CDR to generate clock times, but
instead should only output clock times at the zero-crossings of the output waveform, which can be
handled by using a MATLAB Function Block. Additional features for the Strobe AMI model include the
handling of strobe pre-amble (only output clock times after the end of the pre-amble) and handling of
Single-Data-Rate (SDR) signals such as a Clock that only outputs clock times on the rising edge of the
output waveform.

An example Strobe/Clock AMI model is attached to this example and can be opened by typing the
following command:

>> open_system('dqs_clock_forward.slx')

This model contains a pass-through differential Tx and Rx. The Rx AMI model outputs clock times
only at zero-crossings and contains two controls:

• DQS_Preamble: The number of DQS transitions to skip before outputting clock times during a
DQS burst. Currently requires at least 4 DQS UI between bursts. (1tCK = 2 DQS UI). The Default
value is "2tCK". When using this Rx as a Clock receiver, this value should be set to "0tCK".

6 Customize IBIS-AMI Models

6-30

• Strobe_or_Clock: Switch between a Strobe or Clock signal. A Strobe signal returns clock times
every edge (DDR) while a Clock signal only returns clock times on rising edges (SDR). The Default
is "Strobe".

Test Generated IBIS-AMI Models

The clock forwarding receiver IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator that supports IBIS 7.1.

References

1 IBIS-AMI 7.1 Specification
2 IBIS BIRD 204
3 IBIS BIRD 209

 Design IBIS-AMI Models to Support Clock Forwarding

6-31

http://www.ibis.org/specs
https://ibis.org/birds/
https://ibis.org/birds/

Design IBIS-AMI Models to Support DC Offset

This example shows how to create Rx AMI models that support DC Offset as defined in the IBIS
Buffer Issue Resolution Document (BIRD) 197.7 by modifying the library blocks in SerDes Toolbox™.
This example will use a DDR5 read transfer (SDRAM to Controller) to demonstrate the setup.

Background

Statistical simulations with AMI models use an Impulse Response as the input to the Init function.
Since an Impulse Response loses any DC information about a signal, an AMI simulation will always be
centered around the new mid-point of the resulting signal swing. Since AMI models are now being
used in single-ended NRZ channels (such as DDR5), the signal will have lost the original mid-point of
its signal swing. Losing this original DC information means the receiver AMI model cannot accurately
model things like saturation.

IBIS BIRD 197.7, adds a new AMI reserved parameter, DC_Offset, which allows the EDA tool to
compute the mid-point of the signal-swing and pass this value to the receiver AMI model. The input
value of DC_Offset is the mean value of the steady state high and low voltages of the analog channel
step response at the Rx pad.

This example introduces DC Offset in SerDes Toolbox by showing how to generate and test an IBIS-
AMI executable that supports DC_Offset.

Rx IBIS-AMI Model Setup in Simulink

To begin, load the DC Offset Simulink model and review the model setup. Start by typing the
following command:

>> open_system('dc_offset.slx')

This will bring up the following SerDes system:

Review Simulink Model Setup

This Simulink SerDes system contains the standard configuration: Stimulus, Tx, Analog Channel and
Rx blocks, with a new DC Offset block added to the SatAmp block in the Rx. The setup of each of
these blocks will be reviewed below.

Configuration Block

• Symbol Time is set to 200.0ps (5.0Gbps).
• Target BER is set to 1e-16.

6 Customize IBIS-AMI Models

6-32

• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ

(nonreturn to zero), respectively.

Stimulus Block

• The Stimulus block is set to default values.

Tx Block

The Tx contains no equalization blocks. Since this example is focused on the Rx model, the Tx block is
untouched.

Analog Channel Block

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.5 GHz, which is the Nyquist frequency for 5.0 GHz
• The Tx Analog model is set up so that Voltage is 1.1 V, Rise time is 10 ps, R (output resistance)

is 50 ohms, and C (capacitance) is 0.65pF.
• The Rx Analog model is set up so that R (input resistance) is 40 ohms and C (capacitance) is

0.65pF.

Rx Block

The Rx block contains 3 equalization blocks: a CTLE block with an AC gain of 0dB and 8 DC Gain
settings, a DFE block that uses four DFE taps with Initial tap weights set to 0, the Minimum tap
values set to [-0.2 -0.1 -0.1 -0.1]V, and the Maximum tap values set to [0.2 0.01 0.1
0.1]V, and a SatAmp block.

The SatAmp block has the Limit set to 1.1V and the Linear gain set to 1V/V. It also contains the new
DC Offset sub-system.

SatAmp Block

Per IBIS BIRD 197.7, “it is assumed that the waveform input to the Rx AMI_GetWave function is the
physical Rx input waveform minus the input value of this DC_Offset. The Rx AMI_GetWave function
may choose to reconstruct the physical input waveform by adding the input value of DC_Offset to the
input waveform.”

Inside the SatAmp block, the value of DC Offset is being added to the incoming waveform before it is
applied to the Saturating Amplifier system object. This allows the saturation amplifier to be applied to
the waveform with the correct signal swing.

Also per BIRD 197.7, “the Rx AMI_GetWave output waveform returned by the AMI model shall swing
around zero volts.” Therefore, after the saturation amplifier, the value of DC Offset is subtracted from
the incoming waveform to retain the original signal swing.

 Design IBIS-AMI Models to Support DC Offset

6-33

DC Offset Sub-System (New)

The DC Offset sub-system block is used to set the current value of DC_Offset for testing purposes.
While the DC_Offset parameter is an input to the AMI model, the EDA tool ignores the value specified
in the .ami file and calculates the correct value at simulation time and passes this value to the model
instead. Since this value is not calculated by Simulink, the mask for this sub-system provides a
method for specifying this value manually.

This new DC_Offset block is not yet included in the SerDes Toolbox library. You can add this
subsystem to a new Simulink model by copy-pasting it from this example. Pasting this block into a
new SerDes Toolbox model will also add the required DC_Offset AMI parameter and DC_Offset
Simulink signal to the Model Workspace.

Run the Simulink Model

The Simulink model is ready to run. Press the run button to launch the simulation.

As the simulation runs, the Time Domain eye diagram gets constantly updated. With DC Offset set to
0.0V in the mask, the eye diagram should look like the following:

6 Customize IBIS-AMI Models

6-34

After the simulation is complete, the Init Statistical and Time Domain Analysis Results plot becomes
available:

 Design IBIS-AMI Models to Support DC Offset

6-35

Open the DC Offset mask, change the DC Offset value to 0.755V, then re-run the simulation. Now the
Time Domain eye diagram should look like the following. Note the reduced signal swing due to the
saturation.

6 Customize IBIS-AMI Models

6-36

After the simulation is complete, the Init Statistical and Time Domain Analysis Results plot becomes
available. Note that the Statistical eye remains unchanged, while the Time Domain eye is showing the
non-linear effects of saturation.

 Design IBIS-AMI Models to Support DC Offset

6-37

Note that since DC Offset only affects the Time Domain results, the Statistical results do not reflect
the effects of DC Offset.

Changing the current value of DC_Offset

The operation of the DC Offset is controlled by the reserved AMI parameter DC_Offset. Changing the
current value of this parameter is not supported by the SerDes IBIS-AMI Manager, so all updates to
the current value are done from the DC Offset sub-system mask.

Note: If the IBIS-AMI Manager is already open, you may need to close and re-open it for the changes
to be visible.

6 Customize IBIS-AMI Models

6-38

Generate Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant model executables, IBIS and AMI files for the DC Offset receiver.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button.

Required Keywords

The IBIS-AMI Reserved input parameter DC_Offset is required for codegen to work properly. If this
parameter is not present in your model the model may codegen, however the DC Offset properties
will not be enabled.

Export Models

On the Export tab in the SerDes IBIS/AMI manager dialog box.

• Update the Rx model name to dc_offset_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for the Rx AMI Model Settings. This will create a model

executable that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Rx model Bits to ignore value to 10,000 to allow enough time for the external clock

waveform to settle during time domain simulations.
• Set Models to export to Rx only since we are only generating a Rx model.
• Set the IBIS file name to be dc_offset.ibs
• Press the Export button to generate models in the Target directory.

Review AMI file

The resulting Rx AMI file will look like a normal Rx AMI file with two exceptions. First, the
AMI_Version is set to 7.1. The second is the inclusion of the reserved parameter DC_Offset. Since
both of these changes are from an unreleased version of the IBIS Specification, either one will cause
this AMI file to fail the IBIS AMI Checker (which is currently on version 7.0.1). If this causes any
problems in your EDA tool you may want to skip the running of the AMI Checker.

Model Limitations

This DC Offset AMI model requires an EDA tool that supports BIRD 197.7.

Test Generated IBIS-AMI Models

The DC Offset receiver IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator that supports BIRD 197.7.

References

IBIS-AMI Specification

IBIS BIRD 197.7

 Design IBIS-AMI Models to Support DC Offset

6-39

https://ibis.org/ver7.0/
https://ibis.org/birds/

Simulate Crosstalk Cancellation in IBIS AMI Receiver Models

This example shows how to simulate crosstalk cancellation in a SerDes Rx AMI model. You can
disable crosstalk cancellation or select a specific aggressor column in the impulse_matrix to cancel.
You can also replace the filter used in the example cancellationFilter.m with a CTLE that
represents the filter implemented in the hardware.

Open the SerDes Designer app. Crosstalk cancellation is implemented in a Pass-Through block
inserted at the beginning of the Rx model. Any additional equalization (e.g., CTLE, AGC, DFE) is
added after this pass-through block.

Export the model with default values to Simulink®.

Add Model_Specific parameters Column, Gain and Delay to the Rx XtalkCancel pass-through
block in the SerDes IBIS-AMI Manager.

Crosstalk Cancellation applies a filter to an aggressor waveform. This filtered aggressor waveform is
then amplified by Gain and shifted by Delay to maximize the amount of cancellation of the crosstalk
applied to the victim waveform.

Column is the column in the impulse_matrix to be cancelled. Column is Usage In, Type Integer
and Format Range. The first column in the impulse_matrix is the victim through impulse
response. If Column is <= 1 then no aggressor will be cancelled. If Column = 2, then the first

6 Customize IBIS-AMI Models

6-40

aggressor in the impulse_matrix will be cancelled. The Min value of Range should be zero, the
Max value should be set to the value of Max_init_Aggressors +1.

Gain is Usage Out, Type Float and Format Value. Gain is unitless.

Delay is Usage Out, Type Float and Format Value. The unit of Delay is seconds.

Crosstalk Cancellation is implemented in the custom user code of the Initialize Function.

Lines 34:35 limits cancelation to a single aggressor column in the impulse matrix

Lines 39:40 limits the cancellation matrix to 20 UI past the cursor location of the through channel
(peak value of the through impulse response).

Lines 41:43 calls crosstalkCancel to calculate the cancelled step response of the column iAgr of
the LocalImpulse matrix.

Lines 51:53 converts the returned cancel step response to a cancelled impulse response and replaces
that section of the iAgr column in the impulse matrix. Function crosstalkCancel applies the
cancellationFilter to the aggressor through step response. In this example
cancellationFilter takes the derivative of the victim impulse response. The best Gain and Delay
is determined by doing a coarse and fine grid search. The first/coarsest grid has Gain=.001, 4,8,16.

 Simulate Crosstalk Cancellation in IBIS AMI Receiver Models

6-41

Subsequent searches reduce the grid size by a factor of 4. For each Gain the function fitDelay
determines the best delay by sweeping the delay from -½ to +½ UI in increments of
sampleInterval. The cancelled crosstalk step response is the aggressor step response minus the
filtered through step response with the Gain and Delay applied. The objective function is the sum of
the squares of the cancelled crosstalk step response from (1:1UI) past the peak magnitude of the
aggressor step response.

The actual shape and magnitude of cancellationFilteris implementation specific. thruSRfiltered is
the cancellationFilter applied to victim through step response. FEXT (far-end crosstalk)
assumes that the aggressor through step response is the same as the victim through step response.

Lines 7:9 take the derivative of the through step response. This represents the shape of the crosstalk
step response. Multiplying this derivative filter by sampleInterval makes the magnitude in the
range of what might be expected in a real filter.

The crosstalk cancellation example is tested with a simple loss channel and idealize FEXT crosstalk.

6 Customize IBIS-AMI Models

6-42

The near end crosstalk (NEXT) to 0, and the far end crosstalk (FEXT) is set to 0.1.

 Simulate Crosstalk Cancellation in IBIS AMI Receiver Models

6-43

The impulse_matrix has three columns in this example. The first column contains the victim
through impulse response. The second column contains the FEXT aggressor crosstalk impulse
response. In the XtalkCancel Column parameter is set to 2, to cancel the second column aggressor
crosstalk impulse response.

Run the simulation to view the results.

The agr1 Pulse Response is totally cancelled. Compare the Unequalized agr1 Pulse Response with
the Equalized agr1 Pulse Response. The channel crosstalk model is ideal, it assumes the crosstalk
applied to the victim is the derivative of the aggressor waveform. The filter applied to the victim
through step response is also ideal. Therefore, the crosstalk cancelation is totally effective in this
example. Real crosstalk channel channels and real crosstalk cancellation filters will be less effective.

IBIS AMI supports crosstalk cancelation in the statistical flow because the input to the AMI_Init
function contains both the victim through and aggressor impulse responses. Crosstalk cancellation
cannot be supported in IBIS time domain simulations because AMI_GetWave only has the victim
waveform as input. The IBIS standard needs to be enhanced to add aggressor waveforms to the
AMI_GetWave function.

6 Customize IBIS-AMI Models

6-44

 Simulate Crosstalk Cancellation in IBIS AMI Receiver Models

6-45

Industry Standard IBIS-AMI Models

• “PCIe4 Transmitter/Receiver IBIS-AMI Model” on page 7-2
• “PCIe5 Transmitter/Receiver IBIS-AMI Model” on page 7-15
• “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-38
• “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-50
• “CEI-56G-LR Transmitter/Receiver IBIS-AMI Model” on page 7-61
• “USB 3.1 Transmitter/Receiver IBIS-AMI Model” on page 7-70
• “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-79
• “ADC IBIS-AMI Model Based on COM” on page 7-111
• “Architectural 112G PAM4 ADC-Based SerDes Model” on page 7-127
• “Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model” on page 7-137

7

PCIe4 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic PCIe Generation 4 (PCIe4) transmitter and receiver IBIS-
AMI models using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-
AMI and PCI-SIG PCIe4 specifications.

PCIe4 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the blocks required for PCIe4 in the SerDes Designer app. The model is then exported to
Simulink® for further customization.

This example uses the SerDes Designer model pcie4_txrx_ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('pcie4_txrx_ami')

A PCIe4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap, and ten presets. The receiver model uses a continuous time linear equalizer (CTLE) with
seven pre-defined settings, and a 2-tap decision feedback equalizer (DFE). To support this
configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 62.5 ps, since the maximum allowable PCIe4 operating frequency is 16
GHz

• Target BER is set to 1e-12.
• Samples per Symbol, Modulation, and Signaling are kept at default values, which are

respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup

• The Tx FFE block is set up for one pre-tap and one post-tap by including three tap weights.
Specific tap presets will be added in later in the example when the model is exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.05 V, Rise time is 12 ps, R (output
resistance) is 50 Ohms, and C (capacitance) is 0.5 pF according to the PCIe4 specification.

Channel Model Setup

• Channel loss is set to 15 dB.
• Target Frequency is set to the Nyquist frequency, 8 GHz.

7 Industry Standard IBIS-AMI Models

7-2

• Differential impedance is kept at default 100 Ohms.

Receiver Model Setup

• The Rx Analogin model is set up so that R (input resistance) is 50 Ohms and C (capacitance) is
0.5 pF according to the PCIe4 specification.

• The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived
from the transfer function given in the PCIe4 Behavioral CTLE specification.

• The Rx DFE/CDR block is set up for two DFE taps. The limits for each tap have been individually
defined according to the PCIe4 specification to +/-30 mV for tap1 and +/-20 mV for tap2.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the PCIe4 setup.

Add the BER plot from ADD Plots and observe the results.

Change the Rx CTLE Configuration select parameter value from 0 to 6 and observe how this
changes the data eye.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-3

Change the value of the Tx FFE Tap weights from [0 1 0] to [-0.125 0.750 -0.125] and
observe the results.

7 Industry Standard IBIS-AMI Models

7-4

Change the Rx CTLE Mode to Adapt and observe the results. In this mode all CTLE values are swept
to find the optimal setting.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-5

Before continuing, reset the value of the Tx FFE TapWeights back to [0 1 0] and Rx CTLE
ConfigSelect back to 0. Leave the Rx CTLE Mode at Adapt. Resetting these values here will avoid
the need to set them again after the model has been exported to Simulink. These values will become
the defaults when the final AMI models are generated.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

PCIe4 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customize it as required for PCIe4 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

7 Industry Standard IBIS-AMI Models

7-6

• Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling is
carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters is carried
over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time-domain (GetWave) eye diagram that is updated as the
model is running.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-7

The second plot contains views of the statistical (Init) and time domain (GetWave) results, similar to
what is available in the SerDes Designer App.

7 Industry Standard IBIS-AMI Models

7-8

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI

model.
• Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding

the current value of Mode in final AMI model to Fixed.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-9

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

• Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the PCIE4 Behavioral CTLE specification.

• CTLE Mode is set to Fixed, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Clear the Phase offset and Reference offset parameters to remove these parameters from the
AMI file, effectively hard-coding these parameters to their current values.

Generate PCIe4 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
PCIe4, then generates IBIS-AMI compliant PCIe4 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry
standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values in three different ways:

• Leave the Tx FFE tap values at their default configuration and you can enter any floating point
value for the pre/main/post taps values.

• Create a new AMI parameter to automatically select preset values - see “Managing AMI
Parameters” on page 6-2.

• Directly specify the ten preset coefficients as defined in the PCIe4 specification - shown below in
this example.

When you directly specify the preset coefficients, you change the format of the three TapWeights
and specify the exact value to use for each preset. Only these ten defined presets will be allowed, and
all three taps must be set to the same preset to get the correct values.

Set Preshoot Tap

• Select TapWeight -1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.000.

7 Industry Standard IBIS-AMI Models

7-10

• Change the Description to Preshoot tap value.
• Change the Format from Range to List.
• Change the Default value to 0.000.
• In the List values box enter: [0.000 0.000 0.000 0.000 0.000 -0.100 -0.125 -0.100

-0.125 -0.166].
• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"

"P9"].
• Click OK to save the changes.

Set Main Tap

• Select TapWeight 0, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.750.
• Change the Description to Main tap value.
• Change the Format from Range to List.
• Change the Default value to 0.750.
• In the List values box enter: [0.750 0.833 0.800 0.875 1.000 0.900 0.875 0.700

0.750 0.834].
• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"

"P9"].
• Click OK to save the changes.

Set De-emphasis Tap

• Select TapWeight 1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to -0.250.
• Change the Description to: De-Emphasis tap value.
• Change the Format from Range to List.
• Change the Default value to -0.250.
• In the List values box enter: [-0.250 -0.167 -0.200 -0.125 0.000 0.000 0.000

-0.200 -0.125 0.000].
• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"

"P9"].
• Click OK to save the changes.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Tx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCIe4 jitter mask requirements.

Set Tx DCD Jitter Value

• Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-11

• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 2.0e-12
• Click OK to save the changes.

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_DCD, Rx_Dj and Rx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Rx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCIe4 jitter mask requirements.

Set Rx DCD Jitter Value

• Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

7 Industry Standard IBIS-AMI Models

7-12

Set Rx Dj Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Rx Rj Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 1.0e-12
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

• Update the Tx model name to pcie4_tx.
• Update the Rx model name to pcie4_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create

model executables that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 20,000 to allow sufficient time for the Rx DFE taps to

settle during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

• Set the IBIS file name to be pcie4_serdes.
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCIe4 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

References
[1] PCI-SIG, https://pcisig.com.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

7-13

https://pcisig.com/

See Also
FFE | CTLE | DFECDR | SerDes Designer

More About
• “PCIe5 Transmitter/Receiver IBIS-AMI Model” on page 7-15
• “Managing AMI Parameters” on page 6-2
• “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

7 Industry Standard IBIS-AMI Models

7-14

PCIe5 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic PCIe Generation 5 (PCIe Gen5) transmitter and receiver
IBIS-AMI models using the library blocks in SerDes Toolbox. The IBIS-AMI models generated by this
example conform to the PCIe Gen5 Base-Specification published by the PCIE-SIG.

PCIe Gen5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the blocks required for PCIe Gen5 in the SerDes Designer app. The model is then exported to
Simulink® for further customization.

This example uses the SerDes Designer model pcie5_ibis-ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('pcie5_ibis-ami');

Configuration Setup

• Symbol Time is set to 31.25 ps, since the maximum allowable PCIe Gen5 data rate is 32 GT/s
with a Nyquist frequency of 16GHz.

• Target BER is set to 1e-12.
• Samples per Symbol is set to 32.
• Modulation is set to NRZ (non-return to zero).
• Signaling is set to Differential.

Transmitter Model Setup

• The Tx FFE block is set up for one pre-tap, one main tap, and one post-tap by including three tap
weights [0 1 0]. Specific tap presets can be configured later in the example when the model is
exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1V, Rise time is 12 ps, R (output resistance)
is 50 Ohms (Table 8-10 note 3) , and C (capacitance) is 0.5 pF according to the PCIe Gen5
specification.

Channel Model Setup

• Channel loss is set to 24 dB (37 dB is maximum loss for Base channel plus CEM card).
• Differential impedance is set to 85 Ohms (see PCIe Gen5 Base Spec, section 8.4.1.2, Figure

8-28 and 8-29).

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-15

• Target Frequency is set to the Nyquist frequency for 32GT/s data rate, which is 16 GHz.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 50 Ohms (Table 8-10 note 3), and C
(capacitance) is 0.5 pF according to the PCIe Gen5 specification.

• There is one Rx CTLE block, with its FilterMethod set to “Cascaded” due to the PCIe Gen5
specifying repeated poles- otherwise the repeated poles would require separate CTLE blocks. The
Rx CTLE set up for 11 configurations (0 to 10) and the associated GPZ Matrix matches the Poles
and Zeros given in the PCIe Gen5 Base Specification (Equation 8-7).

• The Rx DFE/CDR block is set up for three DFE taps. The limits for each tap have been individually
defined according to the PCIe Gen5 specification to +/-80 mV for tap 1, +/-20 mV for tap 2, and
+/-20 mV for tap 3.

Plot Statistical Eye Diagram and BER

You can use various plot types in SerDes Designer to visualize the output and performance of the
PCIe Gen5 system. You can confirm the Rx CTLE is functional by setting its Mode to fixed and set
Configuration to 11. Select the BER plot from the "ADD Plots" menu in the toolstrip and observe
the Statistical Eye Diagram is displayed along with BER.

Note: The Statistical Eye Diagram and BER shown here represents a configuration with all Jitter
Parameters disabled.

7 Industry Standard IBIS-AMI Models

7-16

Change the Rx CTLE ConfigSelect to 3 and observe the plot changes to a closed eye diagram:

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-17

Before continuing, change the Rx CTLE Mode back to Adapt. Resetting this value for the RX CTLE
will avoid the need to set it again after the model has been exported to Simulink. This configuration
will become the default when the IBIS-AMI models are generated.

Jitter Setup for Transmitter and Receiver

You can click on the Tx/Rx Jitter button on the toolstrip to view the Jitter Parameters tab. At this
point you can also add the Report tab from the "Add Plots" menu in the toolstrip. The Report tab will
enable you to observe how much the Statistical Eye Diagram and BER plot change as you enable or
disable the various jitter types in the Jitter Parameters tab.

7 Industry Standard IBIS-AMI Models

7-18

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-19

You can enable which jitter parameters are exported to Simulink by enabling the check boxes for
Tx_DCD, Tx_Rj, Tx_Dj, x_DCD, Rx_Rj, and Rx_Dj. If they are disabled, they will not be exported,
however you can also add jitter parameters in Simulink using the IBIS-AMI manager.

Tx Jitter Parameters

You can verify the Jitter parameters are set correctly by referencing the PCIe Gen5 Base
specification, table 8-6, "Data Rate Dependent Transmitter Parameters."

Note: These parameters will export as type "Float" with format "Value." After exporting to Simulink,
you can change these to format "Range" using the IBIS-AMI Manager.

Tx DCD Jitter Value (Ttx-upw-tj from Table 8-6 in the PCIe Gen5 Base Spec)

• Confirm value is 6.25e-12 (Note: this is the maximum allowed per specification).
• Confirm units is set to seconds.
• Enable Tx_DCD.

Tx Rj Jitter Value (Ttx-rj from table 8-6)

• Confirm value is 0.45e-12 (Note: this is the maximum allowed per specification).
• Confirm units is set to seconds.
• Enable Tx_Rj.

Tx Dj Jitter Value (Ttx-upw-djdd from Table 8-6)

• Confirm value is 2.5e-12 (Note: this is the maximum allowed per specification).
• Confirm units is set to seconds.
• Enable Tx_Dj.

Rx Jitter Parameters and Enable for Export to Simulink

Rx DCD Jitter Values

• Confirm value is 0.
• Confirm units is set to seconds.
• Enable Rx_DCD.

Rx Rj Jitter Values (Trx-st-rj from Table 8-9)

• Confirm value is 0.5e-12 to seconds (Note: this is the maximum allowed per specification).
• Confirm units is set to seconds.
• Enable Rx_DCD.

Rx Dj Jitter Values

• Confirm value is 0.
• Confirm units is set to seconds.
• Enable Rx_Dj.

You may observe that the Statistical Eye and BER plot is nearly closed, but this is expected. The jitter
parameters from the specification are maximum allowed values and there is no expectation they

7 Industry Standard IBIS-AMI Models

7-20

would each be maximum at the same time in a real world system. The reason you are enabling these
jitter parameters is so they are automatically included in this SerDes System when exporting to
Simulink. Later you will see how to change these to ranges and set each one to 0 as a default value.

Note: After exporting to Simulink, you can also edit their Type, Usage, Format, and Value using the
IBIS-AMI manager.

Export SerDes System to Simulink

Click on the Export button in the toolstrip to export the above configuration to Simulink for further
customization and generation of the IBIS-AMI model files.

PCIe Gen5 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customize it as required for PCIe Gen5 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

• You can confirm settings are carried over from the SerDes Designer app by double clicking the
Configuration block and the Analog Channel block. Then open the Block Parameters dialog box
and check their values.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-21

• You can double click the Tx block and the Rx block to look inside each of their subsystems which
are inherited from the SerDes Designer app.

Set Ignore Bits

Before running the simulation, open the IBIS-AMI Manager. You can set the bits to ignore for the
Tx to 3, because the FFE has 3 taps. Set the bits to ignore for the Rx to 1000, so the DFECDR can
converge during time domain simulation.

Update Tx Jitter Parameters

You can change the Format to "Range" for the Jitter Parameters by clicking on the AMI - Tx tab, select
Tx_DCD and press the Edit button.

7 Industry Standard IBIS-AMI Models

7-22

The following ranges allow you to fine-tune the jitter values to meet PCIe Gen5 jitter mask
requirements. For example, see table 8-6, "Data Rate Dependent Transmitter Parameters" in the PCIe
Gen5 Base specification.

Set Tx DCD Jitter Values (Ttx-upw-tj from Table 8-6)

• Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Verify the Type to Float.
• Change the Format to Range.
• Set the Current Value to 0.
• Set the Typ value to 0.
• Set the Min value to 0.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-23

• Set the Max value to 6.25e-12.
• Click OK to save the changes.

Set Tx Rj Jitter Values (Ttx-rj from table 8-6)

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Follow the steps for Tx_DCD, above.
• Set the Max value to 0.45e-12.
• Click OK to save the changes.

Set Tx Dj Jitter Values (Ttx-upw-djdd from Table 8-6)

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Follow the steps for Tx_DCD, above.
• Set the Max value to 2.5e-12.
• Click OK to save the changes.

7 Industry Standard IBIS-AMI Models

7-24

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Update Rx Jitter Parameters

Select the Rx_DCD, Rx_Dj and Rx_Rj and follow the steps above from Tx_DCD. The following ranges
allow you to fine-tune the jitter values for your own system.

Set Rx DCD Jitter Values

• Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to Float.
• Change the Format to Range.
• Set the Current Value to 0.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.
• Click OK to save the changes.

Set Rx Rj Jitter Values (Trx-st-rj from Table 8-9)

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Follow the steps for Rx_DCD.
• Set the Max value to 0.5e-12.
• Click OK to save the changes.

Set Rx Dj Jitter Values

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Follow the steps for Rx_DCD.
• Click OK to save the changes.

Note: you can close the IBIS AMI Manager for the next section, you can revisit this dialog to export
IBIS-AMI models later.

Run the SerDes System Model in Simulink

Run the model to simulate the SerDes System.

Many plots are generated, including a live time-domain (GetWave) eye diagram that is updated as the
model is running.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-25

The second plot contains views of the statistical (Init) results and persistent time domain (GetWave)
results, similar to what is available in the SerDes Designer App.

7 Industry Standard IBIS-AMI Models

7-26

Review Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
• Verify that the current value of Mode is set to Fixed.

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the Block Parameters dialog box.
• Gain pole zero data is carried over from the SerDes Designer app. This gain pole zero data

applies the transfer function of the behavioral CTLE given by the PCIe Gen5 Base Specification.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-27

• CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal configuration at run time.

Review Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• The DFE tap value(s) are carried over from the SerDes Designer app.

Generate PCIe Gen5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
PCIe Gen5, then generates IBIS-AMI compliant model files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry
standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values by creating new AMI
parameters and implementing an algorithm in the Init customer specific code section to select PCIe
Gen5 Preset values P0 through P10.

When you directly specify the preset coefficients, you change the format of the three TapWeights
and specify the exact value to use for each preset. Only these eleven defined presets will be allowed,
and all three taps must be set to the same preset to get the correct values.

7 Industry Standard IBIS-AMI Models

7-28

Modify Init to Select Presets for Preshoot Tap, Main Tap, and De-emphasis Tap

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the newly
added ConfigSelect parameter. The ConfigSelect parameter controls the existing three transmitter
taps. To accomplish this, add a switch statement that takes in the values of ConfigSelect and
automatically sets the values for all three Tx taps, ignoring the user defined values for each tap. If a
ConfigSelect value of -1 is used, then the user-defined Tx tap values are passed through to the FFE
datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog box and click
the Refresh Init button to propagate the new AMI parameter to the Initialize sub-system.

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize block to open
the Initialize Function.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-29

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the
SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

FFEParameter.ConfigSelect; % User added AMI parameter

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area, comment out
the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is
pressed)

%FFEParameter.ConfigSelect; % User added AMI parameter

switch FFEParameter.ConfigSelect

case -1 % User defined tap weights

FFEInit.TapWeights = FFEParameter.TapWeights;

case 0 % PCIe Configuration: P0

7 Industry Standard IBIS-AMI Models

7-30

FFEInit.TapWeights = [0.000 0.750 -0.250];

case 1 % PCIe Configuration: P1

FFEInit.TapWeights = [0.000 0.830 -0.167];

case 2 % PCIe Configuration: P2

FFEInit.TapWeights = [0.000 0.800 -0.200];

case 3 % PCIe Configuration: P3

FFEInit.TapWeights = [0.000 0.875 -0.125];

case 4 % PCIe Configuration: P4

FFEInit.TapWeights = [0.000 1.000 0.000];

case 5 % PCIe Configuration: P5

FFEInit.TapWeights = [-0.100 0.900 0.000];

case 6 % PCIe Configuration: P6

FFEInit.TapWeights = [-0.125 0.875 0.000];

case 7 % PCIe Configuration: P7

FFEInit.TapWeights = [-0.100 0.700 -0.200];

case 8 % PCIe Configuration: P8

FFEInit.TapWeights = [-0.125 0.750 -0.125];

case 9 % PCIe Configuration: P9

FFEInit.TapWeights = [-0.166 0.834 0.000];

otherwise

FFEInit.TapWeights = FFEParameter.TapWeights;

end

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect parameter to set
Current value to P7. This corresponds to PCIe Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200.

Modify GetWave to Select Presets for Preshoot Tap, Main Tap, and De-emphasis Tap

To modify GetWave, add a new MATLAB function that operates in the same manner as the Initialize
function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-31

You can see that a new constant block has been added called FFEParameter.ConfigSelect. This is
created automatically by the IBIS-AMI Manager when a new Reserved Parameter is added. Next, you
can follow these steps to re-configure the selection of tap weight presets for time domain (GetWave)
simulation:

• Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.
• Rename the MATLAB Function block to PCIe5FFEconfig.
• Double-click the MATLAB Function block and replace the template code with the following:

% PCIe5 tap configuration selector

% Selects pre-defined Tx FFE tap weights based on PCIe5 specified

% configurations.

%

% Inputs:

% TapWeightsIn: User defined floating point tap weight values.

% ConfigSelect: 0-9: PCIe4 defined configuration (P0-P9).

% -1: User defined configuration (from TapWeightsIn).

% Outputs:

7 Industry Standard IBIS-AMI Models

7-32

% TapWeightsOut: Array of tap weights to be used.

%

function TapWeightsOut = PCIe5FFEconfig(TapWeightsIn, ConfigSelect)

switch ConfigSelect

case -1 % User defined tap weights

TapWeightsOut = TapWeightsIn;

case 0 % PCIe Configuration: P0

TapWeightsOut = [0.000 0.750 -0.250];

case 1 % PCIe Configuration: P1

TapWeightsOut = [0.000 0.833 -0.167];

case 2 % PCIe Configuration: P2

TapWeightsOut = [0.000 0.800 -0.200];

case 3 % PCIe Configuration: P3

TapWeightsOut = [0.000 0.875 -0.125];

case 4 % PCIe Configuration: P4

TapWeightsOut = [0.000 1.000 0.000];

case 5 % PCIe Configuration: P5

TapWeightsOut = [-0.100 0.900 0.000];

case 6 % PCIe Configuration: P6

TapWeightsOut = [-0.125 0.875 0.000];

case 7 % PCIe Configuration: P7

TapWeightsOut = [-0.100 0.700 -0.200];

case 8 % PCIe Configuration: P8

TapWeightsOut = [-0.125 0.750 -0.125];

case 9 % PCIe Configuration: P9

TapWeightsOut = [-0.166 0.834 0.000];

otherwise

TapWeightsOut = TapWeightsIn;

end

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-33

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant blocks connect
to the inputs of the newly defined PCIe4FFEconfig MATLAB function block. The TapWeightsOut signal
from the PCIe4FFEconfig block connects to the TapWeights port of the FFE block.

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect parameter to set
Current value to P7. This corresponds to PCIe Configuration P7: Pre = -0.100, Main = 0.700 and Post
= -0.200. Observe the output waveforms.

7 Industry Standard IBIS-AMI Models

7-34

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-35

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

• Verify the Tx model name is pcie_g5_tx.
• Verify the Rx model name is pcie_g5_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create

model executables that support both statistical (Init) and time domain (GetWave) analysis.

7 Industry Standard IBIS-AMI Models

7-36

• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 1000 to allow sufficient time for the Rx DFE taps to

settle during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

• Set the IBIS file name to be pcie5ami.
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCIe Gen5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in
any industry standard AMI model simulator.

References
[1] PCI-SIG, https://pcisig.com.

See Also
FFE | CTLE | DFECDR | SerDes Designer

More About
• “PCIe4 Transmitter/Receiver IBIS-AMI Model” on page 7-2
• “Managing AMI Parameters” on page 6-2
• “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

External Websites
• https://www.sisoft.com/support/

 PCIe5 Transmitter/Receiver IBIS-AMI Model

7-37

https://pcisig.com/
https://www.sisoft.com/support/

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™ and have been Verified by Intel®. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the SDRAM. The generated models conform
to the IBIS-AMI specification.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDR5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI model generation.

Type the following command in the MATLAB® command window to open the ddr5_sdram model:

>> serdesDesigner('ddr5_sdram')

The SDRAM has a DDR5 transmitter (Tx) using no equalization. The SDRAM also has a DDR5
receiver (Rx) using a variable gain amplifier (VGA) with 7 pre-defined settings and a 4-tap decision
feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.
• Target BER is set to 100e-18.
• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ

(nonreturn to zero), respectively.

Transmitter Model Setup

• The DDR5 SDRAM has no transmit equalization, so only an analog model is required.
• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R (output

resistance) is 48 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.

7 Industry Standard IBIS-AMI Models

7-38

• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

• The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

• The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V, and the Maximum tap value
is set to [0.05 0.075 0.06 0.045] V.

• Note: the DFECDR offers an option for "2X Taps." Check this option to have pulse response values
match convention used by JEDEC. Uncheck this option to use pulse response values directly from
the plot.

•

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 SDRAM setup.

• Add the BER plot from Add Plots and observe the results.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-39

• Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

7 Industry Standard IBIS-AMI Models

7-40

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

• Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

• Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

• Double-click the Tx block to look inside the Tx subsystem. Since there is no algorithmic model for
the transmitter, the Tx subsystem is simply a pass through from the WaveIn to WaveOut ports.

• Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

• Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the VGA and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-41

After the simulation has completed the second plot contains views of the Statistical (Init) and Time
Domain (GetWave) results, along with reported Eye metrics for each.

7 Industry Standard IBIS-AMI Models

7-42

Review Rx VGA Block

• Inside the Rx subsystem, double-click the VGA block to open the VGA Block Parameters dialog
box.

• The Mode and Gain settings are carried over from the SerDes Designer app.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-43

Update Rx DFECDR Block

• Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and 1e-06, respectively, which are reasonable values based on DDR5 SDRAM
expectations.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

7 Industry Standard IBIS-AMI Models

7-44

•

Generate DDR5 SDRAM IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 SDRAM, and then generates IBIS-AMI compliant DDR5 SDRAM model executables, IBIS and
AMI files.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-45

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Review Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. Notice that there are no model-
specific parameters since the DDR5 SDRAM Tx does not have any equalization.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following values allow you to
fine-tune the jitter values to meet DDR5 jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently available for DDR5-4800.

Set Tx Deterministic Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.1000
• Click OK to save the changes.

Set Tx Random Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.0050
• Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set the VGA Gain:

• Highlight Gain.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• In the Description box, type Rx Amplifier Gain.
• Make sure Format is set to List and set Default to 1.
• In the List values box, enter [0.5 0.631 0.794 1 1.259 1.585 2]
• In the List_Tip values box, enter ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6

dB"]
• Click OK to save the changes.

7 Industry Standard IBIS-AMI Models

7-46

Set First DFE Tap Weight

• Highlight TapWeight 1.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
• Click OK.

Set Second DFE Tap Weight

• Highlight TapWeight 2.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075
• Click OK.

Set Third DFE Tap Weight

• Highlight TapWeight 3.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06
• Click OK.

Set Fourth DFE Tap Weight

• Highlight TapWeight 4.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0.045
• Click OK.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj and Rx_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Rx AMI file. The
following values allow you to fine-tune the jitter values to meet DDR5 jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently available for DDR5-4800.

Set Rx Random Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.00375
• Click OK to save the changes.

Set Rx Deterministic Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-47

• Change the Format to Value.
• Set the Current Value to 0.01750
• Click OK to save the changes.

Set Rx Receiver Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Change the Format to Value.
• Set the Current Value to 0.040
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to ddr5_sdram_tx.
• Update the Rx model name to ddr5_sdram_rx.
• Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates

model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

• Set the Rx model Bits to ignore value to 250000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

• Set the Models to export to Both Tx and Rx and ensure that all files have been selected to be
generated (IBIS file, AMI file(s) and DLL file(s)). Note that while the Tx does not implement any
equalization, we are still generating a pass-through model that will allow Tx jitter to be added to
the simulation if desired.

• Set the IBIS file name to temp_ddr5_sdram.ibs
• Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

• POD11_IO_ZO34_ODTOFF: 34 ohm output impedance with no input ODT.
• POD11_IO_ZO48_ODTOFF: 48 ohm output impedance with no input ODT.
• POD11_IN_ODT34_C: Input with 34 ohm ODT.
• POD11_IN_ODT40_C: Input with 40 ohm ODT.
• POD11_IN_ODT48_C: Input with 48 ohm ODT.
• POD11_IN_ODT60_C: Input with 60 ohm ODT.
• POD11_IN_ODT80_C: Input with 80 ohm ODT.

7 Industry Standard IBIS-AMI Models

7-48

• POD11_IN_ODT120_C: Input with 120 ohm ODT.
• POD11_IN_ODT240_C: Input with 240 ohm ODT.

To generate this complete IBIS file, the following changes were made to temp_ddr5_sdram.ibs
using a text editor:

• Created one pin with a signal_name of DQ1_sdram and model_name of dq.
• Added two drivers with Model_type of I/O and named them POD11_IO_Z034_ODTOFF and

POD11_IO_Z048_ODTOFF, respectively.
• Added seven receiver models and named them:

a) POD11_IN_ODT34_C

b) POD11_IN_ODT40_C

c) POD11_IN_ODT48_C

d) POD11_IN_ODT60_C

e) POD11_IN_ODT80_C

f) POD11_IN_ODT120_C

g) POD11_IN_ODT240_C

• Added VI curves and Algorithmic Model sections to all above mentioned models.
• Added a Model Selector section that references all above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References
[1] IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7_0.pdf.

See Also
VGA | DFECDR | SerDes Designer

More About
• “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-50
• “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-79

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

7-49

https://ibis.org/ver7.0/ver7_0.pdf

DDR5 Controller Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™ and have been Verified by Intel®. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the controller. The generated models
conform to the IBIS-AMI specification.

DDR5 Controller Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDR5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI Model generation.

Type the following command in the MATLAB® command window to open the ddr5_controller
model:

>> serdesDesigner('ddr5_controller')

The controller has a DDR5 transmitter (Tx) using 4-tap feed forward equalization (FFE). The
controller also has a DDR5 receiver (Rx) using a continuous time linear equalizer (CTLE) with 8 pre-
defined settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8 Gbps for DDR5-4800.
• Target BER is set to 100e-18.
• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are respectively 16 and

NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

• The Tx FFE block is set up for one pre-tap, one main-tap, and two post-taps by including four tap
weights. This is done with the array [0 1 0 0], where the main tap is specified by the largest value
in the array. Tap ranges will be added later in the example when the model is exported to
Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

7 Industry Standard IBIS-AMI Models

7-50

Channel Model Setup

• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz
• Channel loss is set to 5 dB at Nyquist, which is typical of DDR channels.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 40 Ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

• The CTLE block is set up for 8 configurations. The Specification is set to DC Gain and AC
Gain. DC Gain is set to [0 -1 -2 -3 -4 -5 -6 -7] dB. Peaking frequency is set to 2.4 GHz.
All other parameters are kept at their default values.

• The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value is set to [-0.2 -0.1 -0.1 -0.1] V and the Maximum tap value is set
to [0.2 0.1 0.1 0.1] V.

• Note: the DFECDR offers an option for "2X Taps." Check this option to have pulse response values
match convention used by JEDEC. Uncheck this option to use pulse response values directly from
the plot.

•

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 Controller setup.

Add the BER plot from Add Plots and observe the results.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-51

Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

7 Industry Standard IBIS-AMI Models

7-52

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 Controller Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-53

• Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation, and Signaling are
carried over from the SerDes Designer app.

• Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

• Double-click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

• Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

• Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

After the simulation has completed the second plot contains views of the Statistical (Init) and Time
Domain (GetWave) results, along with Eye metrics reported for each.

7 Industry Standard IBIS-AMI Models

7-54

Review Tx FFE Block

• Inside the Tx subsystem, double-click the FFE block to open the FFE Block Parameters dialog box.
• The Tap Weights are carried over from the SerDes Designer app.

Review Rx CTLE Block

• Inside the Rx subsystem, double-click the CTLE block to open the CTLE Block Parameters dialog
box.

• DC gain, AC gain, and Peaking frequency are carried over from the SerDes Designer app.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-55

• CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and 1e-06, respectively, which are reasonable values based on DDR5 Controller
expectations.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

Generate DDR5 Controller IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 Controller, and then generates IBIS-AMI-compliant DDR5 Controller model executables, IBIS
and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set Pre-Emphasis Tap

• Highlight TapWeight -1
• Click the Edit... to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.2.
• Click OK to save the changes.

Set Main Tap

• Highlight TapWeight 0.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 1, Min = 0.6, and Max = 1.
• Click OK.

Set First Post-Emphasis Tap

• Highlight TapWeight 1.
• Select the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.2.

7 Industry Standard IBIS-AMI Models

7-56

• Click OK.

Set Second Post-Emphasis Tap

• Highlight TapWeight 2.
• Select the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min= -0.1, and Max = 0.1.
• Click OK.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following jitter values can be
adjusted to meet the DDR5 mask requirements for a specific controller.

Set Tx Deterministic Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.0500
• Click OK to save the changes.

Set Tx Random Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.0025
• Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set First DFE Tap Weight

• Highlight TapWeight 1.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
• Click OK.

Set Second DFE Tap Weight

• Highlight TapWeight 2.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-57

• Click OK.

Set Third DFE Tap Weight

• Highlight TapWeight 3.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06.
• Click OK.

Set Fourth DFE Tap Weight

• Highlight TapWeight 4.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0.045.
• Click OK.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj, Rx_Noise,
Rx_UniformNoise and Rx_Rj boxes and click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file. The following jitter and noise values can be adjusted to meet
the DDR5 mask requirements for a specific controller.

Set Rx Random Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.00375
• Click OK to save the changes.

Set Rx Deterministic Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Type to UI.
• Change the Format to Value.
• Set the Current Value to 0.0125
• Click OK to save the changes.

Set Rx Receiver Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Change the Format to Value.
• Set the Current Value to 0.040
• Click OK to save the changes.

7 Industry Standard IBIS-AMI Models

7-58

Set Rx Gaussian Noise Value

• Select Rx_Noise, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Change the Format to Value.
• Set the Current Value to 0.0015
• Click OK to save the changes.

Set Rx Uniform Noise Value

• Select Rx_UniformNoise, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Change the Format to Value.
• Set the Current Value to 0.0025
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to ddr5_controller_tx
• Update the Rx model name to ddr5_controller_rx
• Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates

model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

• Set the Tx model Bits to ignore to 4 since there are four taps in the Tx FFE.
• Set the Rx model Bits to ignore to 250000(is 10000 enough?-GK) to allow sufficient time

for the Rx DFE taps to settle during time domain simulations.
• Verify that both Tx and Rx are set to export and that all files have been selected to be generated

(IBIS file, AMI file(s) and DLL file(s)).
• Set the IBIS file name to temp_ddr5_controller.ibs directory so that the example file

ddr5_controller.ibs is not overwritten.
• Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

• POD11_IO_ZO50_ODTOFF: 50 ohm output impedance with no input ODT.
• POD11_IN_ODT40_C: Input with 40 ohm ODT.
• POD11_IN_ODT60_C: Input with 60 ohm ODT.

To generate this complete IBIS file, the following changes were made to ddr5_controller.ibs using a
text editor:

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-59

• Created one pin with a signal_name of DQ1_controller and model_name of dq.
• Changed the driver Model_type to I/O and named it POD11_IO_Z050_ODTOFF.
• Added two receiver models and named them POD11_IN_ODT40_C and POD11_IN_ODT60_C,

respectively.
• Added VI curves and Algorithmic Model sections to all above mentioned models.
• Added a Model Selector section that references the above mentioned models.

Note: It is always recommended to verify the values for vinl, vinh, c_comp and other variables in
the .ibs file match your device datasheet values.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References
[1] IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7_0.pdf.

See Also
FFE | CTLE | AGC | DFECDR | SerDes Designer

More About
• “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-38
• “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-79

7 Industry Standard IBIS-AMI Models

7-60

https://ibis.org/ver7.0/ver7_0.pdf

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic CEI-56G-LR transmitter and receiver IBIS-AMI models
using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-AMI and OIF-
CEI-04.0 specifications.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for CEI-56G in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model cei_56G_lr_txrx. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('cei_56g_lr_txrx')

A CEI-56G-LR compliant transmitter uses a 4-tap feed forward equalizer (FFE) with two pre-taps and
one post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with 17 pre-defined
settings, and a 12 to 18 tap decision feedback equalizer (DFE). To support this configuration the
SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 35.71 ps, for a symbol rate of 28 GBaud and a PAM4 rate of 56 Gbps.
• Target BER is set to 100e-6, which assumes a compliant receiver with FEC.
• Modulation is set to PAM4.
• Samples per Symbol and Signaling are kept at default values, which are respectively 16 and
Differential.

Transmitter Model Setup

• The Tx FFE block is set up for two pre-taps and one post-tap by including four tap weights, as
specified in the OIF-CEI-04.0 specification. This is done with the array [0 0 1 0], where the main
tap is specified by the largest value in the array.

• The Tx AnalogOut model is set up so that Voltage is 1.0 V, Rise time is 2.905 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.16 pF.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-61

Channel Model Setup

• Channel loss is set to 20 dB.
• Differential impedance is kept at default 100 Ohms.
• Target Frequency is set to the Nyquist frequency, 14 GHz.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.16 pF.

• The Rx CTLE block is set up for 147 configurations using the GPZ (Gain Pole Zero) matrix.
• The Rx DFE/CDR block is set up for 18 DFE taps. The limits for the taps are set to -0.7 to 0.7.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the CEI-56G-LR setup.

Add the BER plot from Add Plots and observe the results.

Add the report from Add Plots and observe that the CTLE Config is 129.

Change the Rx CTLE Mode parameter to fixed and the ConfigSelect parameter value from 129 to
8 and observe how this changes the data eye.

7 Industry Standard IBIS-AMI Models

7-62

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting here will avoid the
need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for CEI-56G-LR in Simulink.

Review Simulink Model Setup

The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-63

• Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. The settings for
this block are not carried over from the SerDes Designer app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters are carried
over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

7 Industry Standard IBIS-AMI Models

7-64

After the simulation has completed the second plot contains views of the statistical (Init) and time
domain (GetWave) results, similar to what is available in the SerDes Designer App.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-65

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI

model.
• Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding

the current value of Mode in the final AMI model to Fixed.

7 Industry Standard IBIS-AMI Models

7-66

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

• Gain pole zero data is carried over from the SerDes Designer app.
• CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system

object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.

Generate CEI-56G-LR Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
CEI-56G-LR, then generates IBIS-AMI compliant CEI-56G-LR model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj
boxes and click OK to add these parameters to the Reserved Parameters section of the Tx AMI file.
The following ranges allow you to fine-tune the jitter values to meet CEI-56G-LR jitter mask
requirements.

Set Tx DCD Jitter Value

• Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.1
• Click OK to save the changes.

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-67

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.1
• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.05
• Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to cei_56g_lr_tx
• Update the Rx model name to cei_56g_lr_rx
• Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx. This will create model executables

that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 4 since there are four taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 200000 to allow sufficient time for the Rx DFE taps to

settle during time domain simulations.
• Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated

(IBIS file, AMI files and DLL files).
• Set the IBIS file name to be cei_56g_lr_serdes.ibs
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The CEI-56G-LR transmitter and receiver IBIS-AMI models are now complete and ready to be tested
in any industry standard AMI model simulator.

References
[1] IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6_1.pdf.

7 Industry Standard IBIS-AMI Models

7-68

https://ibis.org/ver6.1/ver6_1.pdf

See Also
FFE | CTLE | DFECDR | SerDes Designer

More About
• “Managing AMI Parameters” on page 6-2

External Websites
• https://www.sisoft.com/support/

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-69

https://www.sisoft.com/support/

USB 3.1 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic Universal Serial Bus version 3.1 (USB 3.1) transmitter and
receiver IBIS-AMI models using the library blocks in SerDes Toolbox™. The generated models
conform to the IBIS-AMI and USB 3.1 specifications.

USB 3.1 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for USB 3.1 in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model usb3_1_txrx_ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('usb3_1_txrx_ami')

A USB 3.1 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with seven pre-defined
settings, and a 1-tap decision feedback equalizer (DFE). To support this configuration the SerDes
System is set up as follows:

Configuration Setup

• Symbol Time is set to 100 ps, since the maximum allowable USB 3.1 operating frequency is 10
GHz.

• Target BER is set to 1e-12 as specified in the USB 3.1 specification.
• Samples per Symbol, Modulation, and Signaling are kept at default values, which are

respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup

• The Tx FFE block is set up for one pre- and one post-tap by including three tap weights, as
specified in the USB 3.1 specification. This is done with the array [0 1 0], where the main tap is
specified by the largest value in the array.

• The Tx AnalogOut model is set up so that Voltage is 1.00 V, Rise time is 60 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.5 pF.

7 Industry Standard IBIS-AMI Models

7-70

Channel Model Setup

• Channel loss is set to 15dB.
• Differential impedance is kept at default 100 Ohms.
• Target Frequency is set to the Nyquist frequency, 5 GHz.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.5 pF.

• In the Rx CTLE, set the Mode to fixed and Configuration Select for "6." The Rx CTLE block is
set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived from the transfer
function given in the USB 3.1 Behavioral CTLE specification.

• In the Rx DFE/CDR, set the Mode to adapt. The Rx DFE/CDR block is set up for one DFE tap. The
limits for the tap are as defined by the USB 3.1 specification: +/-50 mV.

Plot Statistical BER Results

Use the SerDes Designer plots to visualize the results of the USB 3.1 setup.

Add the BER plot from ADD Plots and observe the results.

 USB 3.1 Transmitter/Receiver IBIS-AMI Model

7-71

Change the Rx CTLE Mode parameter from adapt to fixed and change the ConfigSelect
parameter value from 6 to 2 and observe how this changes the data eye.

Before continuing, change the value of Rx CTLE Mode back to adapt. Resetting the value here will
avoid the need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

USB 3.1 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for USB 3.1 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of the Configuration, Stimulus, Tx, Analog
Channel and Rx blocks. All the settings from the SerDes Designer app have been transferred to the
Simulink model. Save the model and review each block setup.

7 Industry Standard IBIS-AMI Models

7-72

• Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running (note: this may not look exactly the same due to real-time adaptation).

 USB 3.1 Transmitter/Receiver IBIS-AMI Model

7-73

After the simulation has completed the second plot contains views of the statistical (Init) and time
domain (GetWave) results, similar to what is available in the SerDes Designer App.

7 Industry Standard IBIS-AMI Models

7-74

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.

 USB 3.1 Transmitter/Receiver IBIS-AMI Model

7-75

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in the final AMI model to Fixed.

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

• Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the USB 3.1 Behavioral CTLE specification.

• CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

• Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.

Generate USB 3.1 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
USB 3.1, then generates IBIS-AMI compliant USB 3.1 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and
click OK to add these parameters to the Reserved Parameters section of the Tx AMI file. The
following ranges allow you to fine-tune the jitter values to meet USB 3.1 jitter mask requirements.

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.17

7 Industry Standard IBIS-AMI Models

7-76

• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.012
• Click OK to save the changes.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model, in the AMI-Rx tab click the Reserved Parameters...
button to bring up the Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity,
Rx_Dj and Rx_Rj boxes and click OK to add these parameters to the Reserved Parameters section of
the Rx AMI file. The following ranges allow you to fine-tune the jitter values to meet USB 3.1 jitter
mask requirements.

Set Rx Receiver_Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Set the Current Value to 0.025
• Change the Format to Range.
• Set the Typ value to 0.025
• Set the Min value to 0.015
• Set the Max value to 0.100
• Click OK to save the changes.

Set Rx Dj Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.3
• Click OK to save the changes.

Set Rx Rj Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
• Set the Current Value to 0.0.

 USB 3.1 Transmitter/Receiver IBIS-AMI Model

7-77

• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.015
• Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to usb3_1_tx
• Update the Rx model name to usb3_1_rx
• Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx. This will create model executables

that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 20000 to allow sufficient time for the Rx DFE taps to

settle during time domain simulations.
• Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated

(IBIS file, AMI files and DLL files).
• Set the IBIS file name to be usb3_1_serdes.ibs
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The USB 3.1 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in
any industry standard AMI model simulator.

References
[1] USB, https://www.usb.org.

[2] IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6_1.pdf.

See Also
FFE | CTLE | DFECDR | SerDes Designer

More About
• “Managing AMI Parameters” on page 6-2

7 Industry Standard IBIS-AMI Models

7-78

https://www.usb.org/
https://ibis.org/ver6.1/ver6_1.pdf

Design DDR5 IBIS-AMI Models to Support Back-Channel Link
Training

This example shows how to create transmitter and receiver AMI models that support link training
communication (back-channel) using a similar method as the one defined in the IBIS 7.0 specification
by adding to the library blocks in SerDes Toolbox™. This example uses a DDR5 write transfer
(Controller to SDRAM) to demonstrate the setup.

Introduction

IBIS 7.0 introduced the ability for models to perform link training, or auto-negotiation, by providing a
mechanism for the Tx and Rx AMI executable models to communicate during GetWave operation. A
link training algorithm can either emulate what the silicon is doing, or it can use channel analysis
methods to determine the optimal Tx and Rx equalization settings, then lock in those settings for the
remainder of the simulation.

Communications between the Tx and Rx executable models are in messages that both the Tx and Rx
executable models understand, and the EDA tool does not need to understand. These agreed upon
messages are called a Back-Channel Interface Protocol. The IBIS specification does not describe the
details of the Back-Channel Interface Protocol but only a method to make the communication work. In
this example we will be generating a new protocol named DDRx_Write.

Currently, SerDes Toolbox does not support the IBIS-AMI back-channel interface reserved parameters
directly. Instead, it supports model specific parameters, which have "_ST" appended to their name,
that perform a similar function. Since these model specific parameters do not use the same name as
the reserved parameters from the IBIS specification, they must be used either as a "matched set" or
with other back-channel models developed by SerDes Toolbox that support the same protocol. These
models should work well in any industry standard AMI model simulator.

DDR5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example starts with the DDR5 controller transmitter model from “DDR5
Controller Transmitter/Receiver IBIS-AMI Model” on page 7-50 and the SDRAM receiver AMI model
from “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-38. We've added a few
additional pass-through blocks to support the back-channel communication and you will then export
the model to Simulink® for further customization.

Open the model DDR5_Write_txrx_ami by typing the following command in the MATLAB®
command window:

>> serdesDesigner('DDR5_Write_txrx_ami')

For a write transaction, the transmitter (Tx) is a DDR5 controller using 3-tap feed forward
equalization (FFE), while the receiver (Rx) is using a variable gain amplifier (VGA) with 7 pre-defined

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-79

settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery. To support
this configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.
• Target BER is set to 100e-18.
• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ

(nonreturn to zero), respectively.

Transmitter Model Setup

• The Pass-Through block Tx_BCI is a block used to support this back-channel implementation. The
operation of this block will be described later in this example.

• The Tx FFE block is set up for one pre-tap, one main-tap, and one post-tap by including three tap
weights. This is done with the array [0 1 0], where the main tap is specified by the largest value in
the array. Tap ranges will be added later in the example when the model is exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

• The Pass-Through block Rx_BCI_Read is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

• The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

• The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V, and the Maximum tap value
is set to [0.05 0.075 0.06 0.045] V. The DFE has been configured to use 2x tap weights in
order to be consistent with the JEDEC DFE tap definition.

• The Pass-Through block Rx_BCI_Write is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

Export SerDes System to Simulink

Click on the Export button to export the configuration to Simulink for further customization and
generation of the AMI model executables.

DDR5 Tx/Rx IBIS-AMI Model Setup in Simulink

This part of the example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 back-channel operation in Simulink.

7 Industry Standard IBIS-AMI Models

7-80

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app are transferred to the Simulink model.
Save the model and review each block setup.

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
Expand the IBIS-AMI parameters and deselect the Mode parameter, effectively hard-coding the
current value of Mode in the final AMI model to Fixed.

• Inside the Rx subsystem, double click the VGA block to open the VGA Block Parameters dialog
box. The Mode and Gain settings are carried over from the SerDes Designer app.

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box. The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS
settings are carried over from the SerDes Designer app. The Adaptive gain and Adaptive step
size are set to 3e-06 and 1e-06, respectively, which are reasonable values based on DDR5
SDRAM expectations. Expand the IBIS-AMI parameters and deselect Phase offset and
Reference offset parameters, effectively hard-coding these parameters to their current values.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI Manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

• Set the pre-emphasis tap: Edit TapWeights -1 and set Format to Range, Typ to 0, Min to -0.2,
and Max to 0.2.

• Set the main tap: Edit TapWeights 0 and set Format to Range, Typ to 1, Min to 0.6, and Max to
1.

• Set the post-emphasis tap: Edit TapWeights 1 and set Format to Range, Typ to 0, Min to -0.2,
and Max to 0.2.

Create new Tx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Tx tab in
the SerDes IBIS-AMI Manager dialog, highlight Tx_BCI and add the following 6 new parameters:

• FFE_Tapm1: This parameter creates a Data Store that is used to pass the FFE pre tap value
between Tx blocks during training. Click the Add Parameter… button. Set Parameter Name to
FFE_Tapm1, Current Value to 0, Usage to InOut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap -1 for back-channel training. Save the changes and note
that this automatically creates Data Stores in the Tx_BCI PassThrough block.

• FFE_Tap0: This parameter creates a Data Store that is used to pass the FFE main tap value
between Tx blocks during training. Click the Add Parameter… button. Set Parameter Name to
FFE_Tap0, Current Value to 0, Usage to InOut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 0 for back-channel training. Save the changes.

• FFE_Tap1: This parameter creates a Data Store that is used to pass the FFE post tap value
between Tx blocks during training. Click the Add Parameter… button. Set Parameter Name to
FFE_Tap1, Current Value to 0, Usage to InOut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 1 for back-channel training. Save the changes.

• BCI_Protocol_ST: This parameter is only used to generate a parameter named "BCI_Protocol_ST"
in the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by
this model. Click the Add Parameter… button. Set Parameter Name to BCI_Protocol_ST,
Current Value to "DDRx_Write", Usage to Info, Type to String, and Format to Value. Set

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-81

the Description as: This model supports the DDRx Write Example back-channel
protocol. NOTE: This model does not currently support the reserved
parameter BCI_Protocol as an input to the model. Save the changes.

• BCI_ID_ST: This parameter is only used to generate a parameter named "BCI_ID_ST" in the .ami
file for partial compliance to the IBIS-AMI specification. This parameter is not used by this model.
Click the Add Parameter… button. Set Parameter Name to BCI_ID_ST, Current Value to
"bci_comm", Usage to Info, Type to String, and Format to Value. Set the Description as:
This model creates files with names beginning with 'bci_comm' for back-
channel communication. NOTE: This model does not currently support the AMI
reserved parameter BCI_ID as an input to the model. Save the changes.

• BCI_State_ST: This parameter creates a Data Store that is used to communicate the status of
back-channel training: 1=Off, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter… button. Set Parameter Name to BCI_State_ST, Usage to InOut, Type to
Integer, and Format to List. Set the Description as: Back channel training status.
NOTE: This model does not currently support the AMI reserved parameter
BCI_State as an input to the model. Set the Default to 2, List values to [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"], then set
the Current Value to "Training". Save the changes.

Update Receiver (Rx) AMI Parameters

On the AMI-Rx tab in the SerDes IBIS-AMI Manager dialog box, the reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

• Set the VGA gain: Edit Gain. Set Description as: Rx Amplifier Gain. Make sure Format is set
to List and set Default to 1. Set List values as [0.5 0.631 0.794 1 1.259 1.585 2] and
List_Tip values as ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6 dB"], then set
the Current Value to 0dB. Save the changes.

• Set the first DFE tap weight: Edit TapWeights 1. Make sure Format is set to Range and set Typ
= 0, Min = -0.2, and Max = 0.05. Save the changes.

• Set the second DFE tap weight: Edit TapWeights 2. Make sure Format is set to Range and set
Typ = 0, Min = -0.075, and Max = 0.075. Save the changes.

• Set the third DFE tap weight: Edit TapWeights 3. Make sure Format is set to Range and set Typ
= 0, Min = -0.06, and Max = 0.06. Save the changes.

• Set the fourth DFE tap weight: Edit TapWeights 4. Make sure Format is set to Range and set
Typ = 0, Min = -0.045, and Max = 0.045. Save the changes.

Create new Rx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Rx tab in
the SerDes IBIS-AMI Manager dialog, highlight Rx_BCI_Write and add the following new
parameters (Note: Rx_BCI_Read does not require any additional parameters):

• sampleVoltage: This parameter creates a Data Store that will be used to pass the CDR sample
voltage to the other Rx blocks during training. Click the Add Parameter… button. Set Parameter
Name to sampleVoltage, Current Value to 0, Usage to InOut, Type to Float, and Format to
Value. Set the Description as: Sample Voltage for back-channel training. Save the
change and note that this automatically creates Data Stores in the Rx_BCI_Write PassThrough
block.

• BCI_Protocol_ST: This parameter only generates a parameter named "BCI_Protocol_ST" in
the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by

7 Industry Standard IBIS-AMI Models

7-82

this model. Click the Add Parameter… button. Set Parameter Name to BCI_Protocol_ST,
Current Value to "DDRx_Write", Usage to Info, Type to String, and Format to Value. Set
the Description as: This model supports the DDRx Write Example back-channel
protocol. NOTE: This model does not currently support the AMI reserved
parameter BCI_Protocol as an input to the model. Save the changes.

• BCI_ID_ST: This parameter only generates a parameter named "BCI_ID_ST" in the .ami file for
partial compliance to the IBIS-AMI specification. This parameter is not used by this model. Click
the Add Parameter… button. Set Parameter Name to BCI_ID_ST, Current Value to
"bci_comm", Usage to Info, Type to String, and Format to Value. Set the Description as:
This model creates files with names beginning with 'bci_comm' for back-
channel communication. NOTE: This model does not currently support the
reserved parameter BCI_ID as an input to the model. Save the changes.

• BCI_State_ST: This parameter creates a Data Store that is used to communicate the status of
back-channel training: 1=Off, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter… button. Set Parameter Name to BCI_State_ST, Usage to InOut, Type to
Integer, and Format to List. Set the Description as: Back channel training status.
NOTE: This model does not currently support the AMI reserved parameter
BCI_State as an input to the model. Set the Default to 2, List values to [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"], then set
the Current Value to "Training". Save the changes.

• BCI_Message_Interval_UI_ST: This parameter only generates a parameter named
"BCI_Message_Interval_UI" in the .ami file for partial compliance to the IBIS-AMI specification.
This parameter is not used by this model. Click the Add Parameter… button. Set Parameter
Name to BCI_Message_Interval_UI_ST, Current Value to 64, Usage to Info, Type to
Integer, and Format to Value. Set the Description as: Thie BCI model requires 1024
Samples Per Bit for proper operation. Save the changes.

• BCI_Training_UI_ST: This parameter only generates a parameter named "BCI_Training_U_STI"
in the .ami file for partial compliance to the IBIS-AMI specification. This parameter is not used by
this model. Click the Add Parameter… button. Set Parameter Name to BCI_Training_UI_ST,
Current Value to 100000, Usage to Info, Type to Integer, and Format to Value. Set the
Description as: BCI training may require 100,000 UI to complete. NOTE: This
model does not currently support the AMI reserved parameter BCI_Training_UI
as an input to the model. Save the changes.

Run Refresh Init

To propagate all the new AMI parameters, run Refresh Init on both the Tx and Rx blocks.

• Double click the Init subsystem inside the Tx block and click the Refresh Init button.
• Double click the Init subsystem inside the Rx block and click the Refresh Init button.

Run the Model

Run the model to simulate the SerDes system and verify that the current setup compiles and runs
with no errors or warnings. Two plots are generated. The first is a live time-domain (GetWave) eye
diagram that is updated as the model is running. The second plot contains four views of the statistical
(Init) results, like the plots available in the SerDes Designer App plus two views from the Time
Domain (GetWave) results.

Note: You can ignore any warnings for the unconnected blocks. These are due to the automatically
generated data store blocks that will be addressed later.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-83

Supplied files

Three sets of external files are required to support back-channel training. The generation of these
files is beyond the scope of this example, so they are included in this example. Download the
following 9 files to the model directory (location of the Simulink .slx file) before running the complete
SerDes system or generating AMI model executables.

Write to back-channel communication files

These three files are used to write the current state of the back-channel training parameters and eye
metric(s) to an external file for communication between the Tx and Rx AMI models.

• MATLAB function file: writeBCIfile.m
• C++ files required for codegen: writeamidata.cpp and writeamidata.h

Read from back-channel communication files

These three files are used to read the current state of the back-channel training parameters and eye
metric(s) from an external file for communication between the Tx and Rx AMI models.

• MATLAB function file: readBCIfile.m
• C++ files required for codegen: readamidata.cpp and readamidata.h

Write to back-channel log files

These three files are used to write current state of the back-channel training parameters and eye
metric(s) after each training step to a log file for debug.

• MATLAB function file: writeBCIhistory.m
• C++ files required for codegen: writebcihist.cpp and writebcihist.h

Modify Tx FFE to enable external control of Tap values

To control the Tx FFE tap weights from the Tx_BCI block when back-channel training is enabled,
replace the FFEParameter.TapWeights Constant block with a DataStoreRead block. This datastore
allows the FFE tap values to change during the simulation and to be passed in and out of each of the
datapath blocks.

Inside the Tx subsystem, click on the FFE block and type Ctrl-U to look under the mask of the FFE
block.

1 Delete the FFETapWeights Constant block.
2 Add a DataStoreRead block labeled BCIFFETapWeightsIn.
3 Double-click on the DataStoreRead block and set the Data store name to: Tx_BCISignal.
4 On the Element Selection tab, expand the signal Tx_BCISignal and highlight FFE_Tapm1,

FFE_Tap0 and FFE_Tap1.
5 Press the Select>> button to select these 3 elements.
6 Save the changes.

Add a Mux block and set the number of inputs to 3 to multiplex these three parameters into a vector
for the FFE block.

Connect the output of the Mux block to the TapWeights input on the FFE.

7 Industry Standard IBIS-AMI Models

7-84

The final FFE block should look like the following:

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Modify the DFECDR to output eye Sample Voltage

To determine the quality of a given set of equalization values during back-channel training, the
voltage that is sampled by the CDR at the center of the eye for each symbol will be used. This value is
captured by a DataStoreWrite block so that its value is available to the other BCI control blocks.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

Open the BusSelector object

1 Highlight voltageSample from the list of Elements in the bus.
2 Hit Select>> to move it to the list of Selected elements.
3 Save the changes.

Add a DataStoreWrite block labeled: CDR sample Voltage

1 Double click the DataStoreWrite block and set the Data store name to: Rx_BCI_WriteSignal on
the Parameters tab.

2 On the Element Assignment tab, expand the signal Rx_BCI_WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
4 Save the changes.

Connect the voltageSample output of the BusSelector to the input of the new DataStoreWrite block.

This portion of the DFECDR block should look like the following:

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-85

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Modify the DFECDR to override Mode when training is enabled

During back-channel training, both the FFE and DFE Modes need to be set to "Fixed". The FFE Mode
has been hard-coded to "Fixed". A simple MATLAB function is used to allow you to set the DFE Mode
when training is not enabled.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

Delete the connection between the DFECDRMode block and the DFECDR.

Add a new MATLAB function block and set the label to DFEModeSelect. This function block reads
the values of BCI_State_ST and DFE.Mode and forces the DFE Mode to 1 (Fixed) when training is
enabled or completed. Copy/Paste the following code into the DFEModeSelect MATLAB function
block, replacing the default contents.

function Mode = DFEModeSelect(DFEModeIn, BCI_State_In)

if BCI_State_In == 1 % Training is Off
 Mode = DFEModeIn;
else
 Mode = 1; % Force DFE Mode to Fixed for all other Training states
end

Add a DataStoreRead block labeled Rx_BCI_Write_BCI_State_In, so the value of BCI_State_ST
can be fed into the MATLAB function block.

1 Double click the DataStoreRead block and set the Data store name to: Rx_BCI_WriteSignal.
2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight

BCI_State_ST.

7 Industry Standard IBIS-AMI Models

7-86

3 Press the Select>> button to select this element.
4 Save the changes.

Wire up these new blocks as shown. The final DFECDR block should look like the following:

Type Ctrl-D to compile the model and check for errors. You can ignore any warnings for the
unconnected blocks. These are due to the automatically generated data store blocks that will be
addressed later

Set up the Tx Init Custom Code

The Tx Initialize function is used to set up the Tx AMI model for running back-channel training during
GetWave analysis. This creates the back-channel communication and log files, sets up the various
parameters and overrides any user defined FFE tap values.

Inside the Tx subsystem, double-click on the Init block, then click on Show Init to open the Initialize
Function in MATLAB.

The Initialize Function is an automatically generated function which provides the impulse response
processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the
section where custom user code can be entered. Data in this section is not over-written when Refresh
Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Tx_BCIBCI_State_ST = Tx_BCIParameter.BCI_State_ST; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap0 = Tx_BCIParameter.FFE_Tap0; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap1 = Tx_BCIParameter.FFE_Tap1; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tapm1 = Tx_BCIParameter.FFE_Tapm1; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to initialize the back-channel parameters, write the first entry in the
back-channel communication file "BCI_comm.csv" and create the back-channel log file
"BCI_comm_log.csv". To add the custom back-channel control code, scroll down to the custom user
code area and Copy/Paste the following code:

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-87

Tx_BCIBCI_State_ST = Tx_BCIParameter.BCI_State_ST; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap0 = Tx_BCIParameter.FFE_Tap0; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap1 = Tx_BCIParameter.FFE_Tap1; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tapm1 = Tx_BCIParameter.FFE_Tapm1; % User added AMI parameter from SerDes IBIS-AMI Manager

%% Set up for GetWave back-channel operation
if Tx_BCIBCI_State_ST == 2 % Training enabled
 bciWrFile = 'BCI_comm.csv'; %% Tx/Rx back-channel communication file
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 Sequence = 1; %% Initialize sequence counter
 EyeHeight = 0.0; %% Initialize training metric
 % Publish Tx capabilities
 numFFEtaps = 3;
 FFEtaps = [0.0, 1.0, 0.0];
 FFEInit.TapWeights = [0.0, 1.0, 0.0];
 % Initialize Rx capabilities (actual values set by Rx)
 numDFEtaps = 1;
 DFEtaps = 0.0000;

 % Create new file for back-channel communication
 writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Create new BCI_ID_log.csv file (for back-channel history)
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'Init', 0, Tx_BCIBCI_State_ST, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, EyeHeight)

end

To test that the new user code is working correctly, save and run the model, then verify that the new
back-channel communication (BCI_comm.csv) and log (BCI_comm_log.csv) files have been created in
the model directory and that the values in the files match the values set above.

Set up the Rx Init Custom Code

The Rx Initialize function is used to set up the Rx AMI model for running back-channel training
during GetWave analysis. This reads in the back-channel communication file and then updates the file
with the Rx configuration information (number of DFE taps and DFE tap values). It also updates the
log file.

Inside the Rx subsystem double click on the Init block, then click on Show Init to open the Initialize
Function in MATLAB.

The Initialize Function is an automatically generated function which provides the impulse response
processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the
section where custom user code can be entered. Data in this section is not over-written when Refresh
Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Rx_BCI_WritesampleVoltage = Rx_BCI_WriteParameter.sampleVoltage; % User added AMI parameter from SerDes IBIS-AMI Manager
Rx_BCI_WriteBCI_State_ST = Rx_BCI_WriteParameter.BCI_State_ST; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to read the configuration from the Tx, initialize the additional back-
channel parameters required by the Rx, write the next entry in the back-channel communication file

7 Industry Standard IBIS-AMI Models

7-88

"BCI_comm.csv", and append to the back-channel log file "BCI_comm_log.csv". To add the custom
back-channel control code, scroll down the custom user code area and Copy/Paste the following code:

Rx_BCI_WritesampleVoltage = Rx_BCI_WriteParameter.sampleVoltage; % User added AMI parameter from SerDes IBIS-AMI Manager
Rx_BCI_WriteBCI_State_ST = Rx_BCI_WriteParameter.BCI_State_ST; % User added AMI parameter from SerDes IBIS-AMI Manager

%% Set up for GetWave back-channel operation
if Rx_BCI_WriteBCI_State_ST == 2 % Training enabled
 %% Read from back-channel communication file to get setup from Tx
 bciRdFile = 'BCI_comm.csv';
 [Protocol, ~, numFFEtaps, ~, FFEtaps, Sequence, State, EyeHeight] = readBCIfile(bciRdFile);

 %% Write Rx setup to back-channel communication file.
 bciWrFile = 'BCI_comm.csv';
 Sequence = Sequence + 1; %% Initialize sequence counter
 % Publish Rx capabilities
 numDFEtaps = 4;
 DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

 writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Write to log file
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Rx', 'Init', 0, Rx_BCI_WriteBCI_State_ST, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, EyeHeight)

 % Force DFE Mode to Fixed when training is enabled.
 DFECDRInit.Mode = 1;

end

To test that the new user code is working correctly, save and run the model, then verify that the back-
channel communication (BCI_comm.csv) and log (BCI_comm_log.csv) files have been created and that
the values in the files match the values set above. In the BCI_comm_log.csv file you should see that
the first RX call has been added to the log file (Sequence #2).

Set up the Tx Tx_BCI pass-through block

The Tx_BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle this block will read the current eye metric supplied by the Rx, store this value,
then update the Tx and Rx parameters for the next pass. When training is complete this block will
signal completion of training, set all Tx and Rx parameters to their optimal values and then return the
models to regular operation.

The first step is to set up the Tx_BCI block for back-channel operation. The MATLAB function block
that controls the operation of the Tx_BCI block is written later in this example.

Look under the mask in the Tx_BCI block. You should see 8 automatically generated DataStore read/
write blocks.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Add a Mux block and set the number of inputs to 3. This will be used to multiplex the three
tapWeightsIn DataStoreRead signals into a single vector.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-89

Add a Demux block and set the number of outputs to 3. This will be used to demultiplex the
tapWeightsOut vector into three separate DataStoreWrite signals.

Add a new MATLAB function block and set the label to Counter. This MATLAB function returns a
count of the total number of samples processed by the model and the resulting number of UI. Open
this new MATLAB function block then Copy/Paste the following code, replacing the default contents.

function [sampCount, uiCount] = counter(SymbolTime, SampleInterval)

% Calculate Samples Per Bit
sampBit = round(SymbolTime/SampleInterval);

% Set up persistent variables
persistent x y
if isempty(x)
 x = int32(1);
 y = int32(1);
else
 x = x + 1;
end

% Start counting by UI
if mod(x,sampBit) == 0
 y = y + 1;
end

% Output results
sampCount = x;
uiCount = y;

The values for two of the inputs to this function, SymbolTime and SampleInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.
2 In the MATLAB function signature highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Change the Data Scope from Signal to Parameter.
5 Repeat this process for SampleInterval.
6 When you save the MATLAB function you should see that these two input parameters have been

removed from the function block on the Simulink canvas.

The Data Type for the outputs of this function, sampCount and uiCount, are set to Inherit by
default. Since this function block is creating the values for these two parameters their Data Type
needs to be explicitly defined instead of determined based on heuristics. To explicitly define the Data
Types for these two parameters:

1 Open the Simulink Model Explorer and navigate to Tx->Tx_BCI->Counter.
2 Highlight the parameter sampCount.
3 Update the Type from Inherit to int32 and click Apply.
4 Repeat this process for uiCount.

Add another new MATLAB function block and set the label to txBackChannel. This MATLAB
function block is used to control the back-channel training process. The contents of this function will

7 Industry Standard IBIS-AMI Models

7-90

be covered later in this example. However, to complete the Tx_BCI block connections you must
display all the correct nodes. To enable this:

1 Double click the txBackChannel MATLAB function block to open it in the MATLAB editor.
2 Delete all the default contents.
3 Insert the following function signature:

function [tapWeightsOut, BCIStateOut] = txBCtraining(tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.
2 In the MATLAB function signature highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Change the Data Scope from Signal to Parameter.
5 Repeat this process for SampleInterval.
6 When you save the MATLAB function you should see that these two input parameters have been

removed from the function block on the Simulink canvas.

Connect everything together as shown below:

Set up the Rx Rx_BCI_Read block

The Rx_BCI_Read block is used to read the Rx parameters values requested by the Tx_BCI block and
set those values for the next back-channel training cycle. If the Tx_BCI block signals that training is
complete, this block sets the final values to be used for the remainder of the simulation.

The first step is to set up the Rx_BCI_Read block for back-channel operation. The MATLAB function
block that controls the operation of the Rx_BCI_Read block is written later in the example.

Look under the mask in the Rx_BCI_Read block.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-91

Delete the Pass-Through system object since it will not be used. Be sure to connect the Inport to the
Outport.

Add a DataStoreRead block labeled DFECDRTapWeightsIn

1 Double click the DataStoreRead block and set the Data store name to: DFECDRSignal.
2 On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights

[1,4].
3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreRead block labeled RxBCIStateIn

1 Double click the DataStoreRead block and set the Data store name to: Rx_BCI_WriteSignal.
2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight

BCI_State_ST.
3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreWrite block labeled RxBCIStateOut

1 Double click the DataStoreWrite block and set the Data store name to: Rx_BCI_WriteSignal.
2 On the Element Assignment tab, expand the signal Rx_BCI_WriteSignal and highlight

BCI_State_ST.
3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreWrite block labeled DFECDRTapWeightsOut

1 Double-click on the DataStoreWrite block and set the Data store name to: DFECDRSignal.
2 On the Element Assignment tab, expand the signal DFECDRSignal and highlight TapWeights

[1,4].
3 Press the Select>> button to select this element.
4 Save the changes.

Copy the Counter MATLAB function block from the Tx Tx_BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelRead. This MATLAB
function block is used to control the back-channel training process. The contents of this function will
be covered later in this example. However, to complete the Rx_BCI_Read block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelRead MATLAB function block to open in the MATLAB editor.
2 Delete all the default contents.
3 Insert the following function signature:

function [BCIStateOut, tapWeightsOut] = rxBCtrainingRead(tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

7 Industry Standard IBIS-AMI Models

7-92

1 Save the MATLAB function.
2 In the MATLAB function signature highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Change the Data Scope from Signal to Parameter.
5 Repeat this process for SampleInterval.
6 When you save the MATLAB function you should see that these two input parameters have been

removed from the function block on the Simulink canvas.

Connect everything together as shown below:

Set up the Rx Rx_BCI_Write block

The Rx_BCI_Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx_BCI block for analysis.

The first step is to set up the Rx_BCI_Write block for back-channel operation. The MATLAB function
block that controls the operation of the Rx_BCI_Write block is written later in the example.

Look under the mask in the Rx_BCI_Write block. You can see four automatically generated DataStore
read/write blocks.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Delete the DataStoreWrite block labeled sampleVoltage write. It will not be used.

Add a DataStoreRead block labeled DFECDRTapWeightsIn.

1 Double-click on the DataStoreRead block and set the Data store name to DFECDRSignal.
2 On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights

[1,4].
3 Press the Select>> button to select this element.
4 Save the changes.

Copy the Counter MATLAB function block from the Tx Tx_BCI block into this block.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-93

Add a new MATLAB function block and set the label to rxBackChannelWrite. This MATLAB
function block is used to control the back-channel training process. The contents of this function will
be covered later in this example. However, to complete the Rx_BCI_Write block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelWrite MATLAB function block to open in the MATLAB editor.
2 Delete all the default contents.
3 Insert the following function signature:

function BCIStateOut = rxBCtrainingWrite(sampleV, tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.
2 In the MATLAB function signature highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Change the Data Scope from Signal to Parameter.
5 Repeat this process for SampleInterval.
6 When you save the MATLAB function you should see that these two input parameters have been

removed from the function block on the Simulink canvas.

Connect everything together as shown below:

Edit the txBCtraining MATLAB function block

The Tx_BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle, this block reads the current eye metric supplied by the Rx, stores this value,
then updates the Tx and Rx parameters for the next pass. When training is complete this block

7 Industry Standard IBIS-AMI Models

7-94

signals completion of training, sets all Tx and Rx parameters to their optimal values and then returns
the models to regular operation.

The Tx_BCI block was set up for back-channel operation earlier in this example. Now you will create
the MATLAB function block at the heart of the Tx_BCI block. This MATLAB function block, which was
labeled txBackChannel, controls the entire back-channel training process. The steps involved in this
process are as follows:

1 Define the function signature
2 Initialize parameters and set persistent variables
3 Define the parameters to be swept and their ranges
4 On the first GetWave call, set up the initial starting parameter values for the Tx and the Rx
5 Every back-channel training cycle read the eye metrics calculated by the Rx and decide what to

do next. When training is complete signal the completion of training, output the optimal Tx and
Rx parameter values to be used during simulation and write these final values to the log file.

6 Set the proper training state and output the FFE parameters to be used

The following sections walks you through the code used in the txBackChannel MATLAB function
block. In the Tx block, click on the Tx_BCI pass-through block and type Ctrl-U to push into the
Tx_BCI pass-through block set up earlier. Double-click on the txBackChannel MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the txBCtraining block has 6 inputs and 2 outputs. The inputs are:

• tapWeightsIn: The FFE tap weights array as defined in the FFE mask.
• BCIStateIn: The back-channel state value from the TxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.
• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and

therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope was earlier set to "Parameter".

• SampleInterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope was earlier set to "Parameter".

There are two outputs:

• tapWeightsOut: The FFE tap weights array output to the BCIFFETapWeightsOut Data Store.
• BCIStateOut: The back-channel state value output to the TxBCIStateOut Data Store.

The function signature was added earlier when initially creating the MATLAB function block and so is
already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:

• sampBit: The number of samples in each UI.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-95

• messageInterval: The length (in UI) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

• BCIwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 11 persistent variables used by this
function. Persistent variables retain their values between each call to this MATLAB function. The 11
persistent variables are:

• Protocol: The protocol being used by this back-channel model.
• numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.
• numFFEtaps: The number FFE taps being included in this back-channel training algorithm.
• DFEtaps: The current DFE tap values.
• FFEtaps: The current FFE tap values.
• Sequence: A integer counter used to log the sequence of training events.
• State: The current back-channel training state.
• EyeHeight: The current eye height (in Volts) being reported by the Rx.
• step: The current training sequence step being run.
• indx: An index variable for control loops.
• metric: An array used to store the incoming eye heights from each training step.

To initialize these parameters and variables, Copy/Paste the following code into the txBackChannel
MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)

%% Read BCI file to determine training values
% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State EyeHeight step indx metric

% Initialize variable initial conditions
if isempty(Protocol)
 Protocol = 'Defaults';
end
if isempty(numDFEtaps)
 numDFEtaps = 4;
end
if isempty(numFFEtaps)
 numFFEtaps = 3;
end
if isempty(DFEtaps)
 DFEtaps = [0.000,0.000,0.000,0.000];
end
if isempty(FFEtaps)
 FFEtaps = [0.000,1.000,0.000];
end
if isempty(Sequence)
 Sequence = 1;
end

7 Industry Standard IBIS-AMI Models

7-96

if isempty(State)
 State = 'Testing';
end
if isempty(EyeHeight)
 EyeHeight = 0.000;
end
if isempty(step)
 step = 1;
end
if isempty(indx)
 indx = 1;
end
if isempty(metric)
 metric = zeros(50,1);
end

Define swept parameters

The training algorithm implemented in this example sweeps the pre and post FFE tap values and all 4
of the DFE taps individually, then selects the optimal value for each tap. Eight parameters are used to
define the ranges for each of the taps and the step size to be used during training:

• ffeTapStep: The step size to be used when sweeping the FFE taps. This value is negative since
the FFE tap values are always <= 0.

• dfeTapStep: The step size to be used when sweeping the DFE taps.
• regFFEtapm1: The min/max range of values to be used when sweeping the FFE pre-tap.
• regFFEtap1: The min/max range of values to be used when sweeping the FFE post-tap.
• regDFEtap1: The min/max range of values to be used when sweeping the first DFE tap.
• regDFEtap2: The min/max range of values to be used when sweeping the second DFE tap.
• regDFEtap3: The min/max range of values to be used when sweeping the third DFE tap.
• regDFEtap4: The min/max range of values to be used when sweeping the fourth DFE tap.

To define all the parameters to be swept during training, Copy/Paste the following code into the
txBackChannel MATLAB function block:

% Define parameter step sizes
ffeTapStep = -0.050;
dfeTapStep = 0.010;

% Map ranges to register values
regFFEtapm1 = (0.000:ffeTapStep:-0.300);
regFFEtap1 = (0.000:ffeTapStep:-0.300);
regDFEtap1 = (-0.200:dfeTapStep: 0.050);
regDFEtap2 = (-0.075:dfeTapStep: 0.075);
regDFEtap3 = (-0.060:dfeTapStep: 0.060);
regDFEtap4 = (-0.045:dfeTapStep: 0.045);

First GetWave call

When training is enabled, the very first call to this MATLAB function needs to read the back-channel
communication file written during Init to determine the full capabilities of the Tx and Rx models. This
section also sets up the initial values to be used for the first back-channel training cycle. Finally, all
these values are written to the back-channel communication log file.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-97

To implement the first GetWave call, Copy/Paste the following code into the txBackChannel MATLAB
function block:

%% First Tx GetWave Call (Sequence=3)
if sampleCounter == 1 && BCIStateIn == 2 % Training enabled
 % Read back-channel communication file to get current settings
 bciRdFile = 'BCI_comm.csv';
 [~, numDFEtaps, numFFEtaps, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

 % Decide what to do first
 % Tx Params
 FFEtaps = [0.000,1.000,0.000];
 % Rx Params
 DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

 % Write back-channel communication file with first pass settings for Rx
 bciWrFile = 'BCI_comm.csv';
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 Sequence = Sequence + 1;
 writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Write to log file
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
end

Back-channel training algorithm

When training is enabled, after waiting the number of UI as defined by the constant BCIwait, the
back-channel training algorithm is called every training block as defined by the messageInterval
constant. First the current metrics reported by the Rx are read, then those results are written to the
back-channel communication log file. The training algorithm uses the following steps:

1 Sweep all values of the FFE pre-tap and determine which value results in the largest eye
opening.

2 Sweep all values of the FFE post-tap and determine which value results in the largest eye
opening.

3 Sweep all values of DFE tap 1 and determine which value results in the largest eye opening.
4 Sweep all values of DFE tap 2 and determine which value results in the largest eye opening.
5 Sweep all values of DFE tap 3 and determine which value results in the largest eye opening.
6 Sweep all values of DFE tap 4 and determine which value results in the largest eye opening.
7 When training is complete, change the State to "Converged" and write the final values to the

back-channel communication log file.

To implement the back-channel training algorithm, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Each subsequent BCI Block (Sequence=5,7,9,11...)
if uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messageInterval * sampBit)) == 0 && BCIStateIn == 2 % Training enabled
 % Read setup used for previous 16 GetWaveblocks from back-channel communication file
 bciRdFile = 'BCI_comm.csv';
 [~, ~, ~, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

7 Industry Standard IBIS-AMI Models

7-98

 % Write current results to log file
 Sequence = Sequence + 1;
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
 if indx ~= 1
 % Store current metrics
 metric(indx - 1) = EyeHeight;
 end

 % Decide what to do next
 switch step
 case 1 % Step 1: Determine best value for FFE tap -1
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 if indx <= length(regFFEtapm1)
 % Set values for next iteration
 FFEtaps(1) = regFFEtapm1(indx);
 FFEtaps(3) = 0.0;
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));
 indx = indx + 1;
 elseif indx == length(regFFEtapm1) + 1
 % Set best metric
 [~, jj] = max(metric);
 FFEtaps(1) = regFFEtapm1(jj);
 FFEtaps(3) = 0.0;
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 2 % Step 2: Determine best value for FFE tap 1
 State = ['Training' 0];
 if indx <= length(regFFEtap1)
 % Set values for next iteration
 %FFEtaps(1) = 0.0; %% Use value from step 1
 FFEtaps(3) = regFFEtap1(indx);
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));
 indx = indx + 1;
 elseif indx == length(regFFEtap1) + 1
 % Set best metric
 [~, jj] = max(metric);
 FFEtaps(3) = regFFEtap1(jj);
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 3 % Step 3: Determine best value for DFE tap 1
 State = ['Training' 0];
 if indx <= length(regDFEtap1)
 % Set values for next iteration
 DFEtaps = [regDFEtap1(indx), 0.0000, 0.0000, 0.0000];
 indx = indx + 1;
 elseif indx == length(regDFEtap1) + 1
 % Set best metric

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-99

 [~, jj] = max(metric);
 DFEtaps = [regDFEtap1(jj), 0.0000, 0.0000, 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 4 % Step 4: Determine best value for DFE tap 2
 State = ['Training' 0];
 if indx <= length(regDFEtap2)
 % Set values for next iteration
 DFEtaps(2:4) = [regDFEtap2(indx), 0.0000, 0.0000];
 indx = indx + 1;
 elseif indx == length(regDFEtap2) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(2:4) = [regDFEtap2(jj), 0.0000, 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 5 % Step 5: Determine best value for DFE tap 3
 State = ['Training' 0];
 if indx <= length(regDFEtap3)
 % Set values for next iteration
 DFEtaps(3:4) = [regDFEtap3(indx), 0.0000];
 indx = indx + 1;
 elseif indx == length(regDFEtap3) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(3:4) = [regDFEtap3(jj), 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 6 % Step 6: Determine best value for DFE tap 4
 State = ['Training' 0];
 if indx <= length(regDFEtap4)
 % Set values for next iteration
 DFEtaps(4) = regDFEtap4(indx);
 indx = indx + 1;
 elseif indx == length(regDFEtap4) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(4) = regDFEtap4(jj);

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 7 % Step 7: Training is complete
 State = ['Converged' 0];

7 Industry Standard IBIS-AMI Models

7-100

 % Write final entry in log file
 logFileName = 'BCI_comm_log.csv';
 Sequence = Sequence + 1;
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, 3, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
 otherwise
 State = ['Error' 0];
 end

 % Write to back-channel communication file with next pass settings for Rx
 bciWrFile = 'BCI_comm.csv';
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, State, EyeHeight)

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function is to update the State for the
BCI_State_ST Data Store and to update the FFE tap array values.

To set the training state and output values, Copy/Paste the following code into the txBackChannel
MATLAB function block:

%% Set back-channel state
if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

%% Set output FFE values based on Training
if BCIStateOut == 2 || BCIStateOut == 3 % Training enabled/Converged
 tapWeightsOut = FFEtaps(:);
else % Training Off/Failed/Error
 tapWeightsOut = tapWeightsIn;
end

Save and close this MATLAB function block.

Edit the rxBCtrainingRead MATLAB function block

The Rx_BCI_Read block is used to read the Rx parameters values requested by the Tx_BCI block and
set them for the next back-channel training cycle. If the Tx_BCI block signals that the training is
complete, this block sets the final values to be used by the Rx for the remainder of the simulation.

The Rx_BCI_Read block was set up for back-channel operation earlier in this example. Now create the
MATLAB function block at the center of the Rx_BCI_Read block. This MATLAB function block, which
was labeled rxBCtrainingRead, sets the Rx DFE values to be used. The steps involved in this
process are as follows:

1 Define the function signature.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-101

2 Initialize parameters and set persistent variables.
3 On the first GetWave call, and at the beginning of every back-channel training cycle, read the Rx

DFE tap values to be used as specified by the Tx back-channel training algorithm.
4 Set the proper training state and output the DFE parameters to be used.

The following sections walk you through the code used in the rxBCtrainingRead MATLAB function
block. In the Rx block, click on the Rx_BCI_Read pass-through block and type Ctrl-U to push into the
Rx_BCI_Read pass-through block set up earlier. Double click the rxBCtrainingRead MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the rxBCtrainingRead block has 6 inputs and 2 outputs. The inputs are:

• tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
• BCIStateIn: The back-channel state value from the RxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.
• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and

therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

• SampleInterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There are two outputs:

• tapWeightsOut: The DFE tap weights array output to the DFECDRTapWeightsOut Data Store.
• BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered earlier when initially creating the MATLAB function block and so
is already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:

• sampBit: The number of samples in each UI.
• messageInterval: The length (in UI) of each back-channel training cycle. This value is currently

set to ~2 PRBS7 iterations.
• BCIwait: The delay time (in UI) before starting back-channel training. This value is currently set

to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 7 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 7 persistent
variables are:

• Protocol: The protocol being used by this back-channel model.
• numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.

7 Industry Standard IBIS-AMI Models

7-102

• numFFEtaps: The number FFE taps being included in this back-channel training algorithm.
• DFEtaps: The current DFE tap values.
• FFEtaps: The current FFE tap values.
• Sequence: A integer counter used to log the sequence of training events.
• State: The current back-channel training state.

To initialize the parameters and variables, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)

% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State;

% Initialize variable initial conditions
if isempty(Protocol)
 Protocol = 'Defaults';
end
if isempty(numDFEtaps)
 numDFEtaps = 4;
end
if isempty(numFFEtaps)
 numFFEtaps = 3;
end
if isempty(DFEtaps)
 DFEtaps = tapWeightsIn;
end
if isempty(FFEtaps)
 FFEtaps = [0,0,0];
end
if isempty(Sequence)
 Sequence = 1;
end
if isempty(State)
 if BCIStateIn == 1 % Off
 State = ['Off' 0];
 elseif BCIStateIn == 2 % Training
 State = ['Training' 0];
 elseif BCIStateIn == 3 % Converged
 State = ['Converged' 0];
 elseif BCIStateIn == 4 % Failed
 State = ['Failed' 0];
 else % Error
 State = ['Error' 0];
 end
end

Read DFE tap values to be used

When training is enabled, on the very first call to this MATLAB function and at the beginning of every
training block as defined by the messageInterval constant, the back-channel communication file is
read to determine the updated DFE tap values to be used for the next training cycle.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-103

To set up the DFE tap values to be used, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

%% First GetWave block of each BCI Block (Sequence=3,5,7,9,11,...)
% Read back-channel communication file to get current settings
if (sampleCounter == 1 && BCIStateIn == 2) || ((uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messageInterval * sampBit)) == 0) && BCIStateIn == 2) % Training enabled
 bciRdFile = 'BCI_comm.csv';
 [Protocol, numDFEtaps, numFFEtaps, DFEtaps(1,1:4), FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function block is to update the State for the
BCI_State_ST Data Store and to update the DFE tap array values.

To set the State and output values, Copy/Paste the following code into the rxBCtrainingRead MATLAB
function block:

%% Set back-channel state
if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

%% Set output DFE values based on Training
if BCIStateOut == 2 % Training enabled
 tapWeightsOut = DFEtaps(1,1:4);
else
 tapWeightsOut = tapWeightsIn;
end

Save and close this MATLAB function block.

Edit the rxBCtrainingWrite MATLAB function block

The Rx_BCI_Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx_BCI block for analysis.

The Rx_BCI_Write block was set up for back-channel operation earlier in this example. Now the
MATLAB function block at the center of the Rx_BCI_Write block will be created. This MATLAB
function block, which we labeled rxBCtrainingWrite, will calculate the minimum eye height of the
last 127 bits and write those values to the back-channel communication file and log file. The steps
involved in this process are as follows:

1 Define the function signature.
2 Initialize parameters and set persistent variables.
3 Store a vector of voltages to be used when calculating the minimum eye height.

7 Industry Standard IBIS-AMI Models

7-104

4 At the end of each back-channel training cycle calculate the minimum eye height and write it to
the back-channel communication file.

5 Update the training state.

The following sections will walk through the code used in the rxBCtrainingWrite MATLAB function
block. In the Rx block, click on the Rx_BCI_Write pass-through block and type Ctrl-U to push into the
Rx_BCI_Write pass-through block set up earlier. Double-click on the rxBCtrainingWrite MATLAB
function block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the rxBCtrainingWrite block has 7 inputs and 1 output. The inputs are:

• sampleV: The voltage at the CDR sample time.
• tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
• BCIStateIn: The back-channel state value from the RxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.
• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and

therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

• SampleInterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There is one output:

• BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered earlier when initially creating the MATLAB function block and so
is already present.

Initialize parameters and variables

This section sets up the four constants needed for calculating the size of the back-channel training
cycle:

• sampBit: The number of samples in each UI.
• messageInterval: The length (in UI) of each back-channel training cycle. This value is currently

set to ~2 PRBS7 iterations.
• BCIwait: The delay time (in UI) before starting back-channel training. This value is currently set

to ~4 PRBS7 iterations.
• windowLength: The length of the window (in UI) used to calculate the minimum eye height. This

value is currently set to 1 PRBS7 iteration.

In addition to the constant values, this section sets up the 5 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 5 persistent
variables are:

• Protocol: The protocol being used by this back-channel model.
• Sequence: A integer counter used to log the sequence of training events.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-105

• State: The current back-channel training state.
• EyeHeight: The calculated inner eye height value (in Volts).
• vSamp: The sample voltage being reported by the CDR block.

To initialize all parameters and variables for this block, Copy/Paste the following code into the
rxBCtrainingWrite MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)
windowLength = 127; %% Length of window (in UI) used to calculate minimum eye height (1 PRBS7 iteration)

% Make variables available between time steps
persistent Protocol Sequence State EyeHeight vSamp

if isempty(State)
 if BCIStateIn == 1 % Off
 State = ['Off' 0];
 elseif BCIStateIn == 2 % Training
 State = ['Training' 0];
 elseif BCIStateIn == 3 % Converged
 State = ['Converged' 0];
 elseif BCIStateIn == 4 % Failed
 State = ['Failed' 0];
 else % Error
 State = ['Error' 0];
 end
end

Store vector of reported voltages

This section accumulates a rolling vector of voltages to be used in the minimum eye height
calculation. Assume that these voltages are symmetric around 0V, so the absolute value is used.

To store the report eye voltage values, Copy/Paste the following code into the rxBCtrainingWrite
MATLAB function block:

% Accumulate rolling vector of voltages for minimum eye height calculations
if isempty(vSamp)
 vSamp = zeros(1, windowLength * sampBit);
end
vSamp = circshift(vSamp, 1);
vSamp(1) = abs(sampleV); % Assume symmetry and only use positive values

Calculate minimum eye height and write to file

When training is enabled, after waiting the number of UI as defined by the constant BCIwait the
back-channel metrics are calculated at the end of each training iteration as defined by the
messageInterval constant. First the back-channel configuration is read from the back-channel
communication file, then the inner eye height value is calculated and the results output to the back-
channel communication file and the log file.

To calculate the eye metrics and write to the communication file every back-channel cycle, Copy/Paste
the following code into the rxBCtrainingWrite MATLAB function block:

7 Industry Standard IBIS-AMI Models

7-106

%% Write current state and eye metrics at the end of each BCI block
if uiCounter > BCIwait + 2 && mod(sampleCounter, (messageInterval * sampBit)) == 0 && BCIStateIn == 2 % Training enabled (Sequence=4,6,8,10,12,...)

 % Read setup used for last 16 GetWaveblocks from back-channel communication file
 bciRdFile = 'BCI_comm.csv';
 [Protocol, ~, ~, ~, FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

 % Calculate inner eye height from sampled voltage:
 EyeHeight = min(vSamp) * 2; % 2x since using absolute value.

 % Write new back-channel communication file with end of BCI-Block metrics
 bciWrFile = 'BCI_comm.csv';
 Sequence = Sequence + 1;
 writeBCIfile(bciWrFile, 'w', Protocol, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFEtaps, Sequence, State, EyeHeight)
 %
 % Write to log file:
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Rx', 'GetW', sampleCounter, BCIStateIn, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFEtaps, Sequence, EyeHeight)

end

Set the training State

The last thing that needs to be done in this MATLAB function block is to update the State for the
BCI_State_ST Data Store.

To set the training state, Copy/Paste the following code into the rxBCtrainingRead MATLAB function
block:

%% Update State Out if State In changed
if BCIStateIn == 3 % Converged
 State = ['Converged' 0];
elseif BCIStateIn == 4 % Failed
 State = ['Failed' 0];
end

if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

Save and close this MATLAB function block.

In Simulink, type Ctrl-D to compile the model and check for errors. Resolve any errors before
proceeding.

Run the Model and Verify results

The next step is to run the model and verify that the back-channel code is operating correctly.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-107

Set up simulation parameters

Before running the complete model, open the Stimulus block to set the stimulus pattern used to test
the model:

• Set PRBS to 7, so that a PRBS7 pattern will be used during simulation.
• Set the Number of symbols to 50000 to allow the back-channel training algorithm enought time

to complete.

Test proper operation of Tx and Rx models

Run the model. While the model is running, observe the time domain waveform changing as each of
the tap settings is swept. When the simulation is complete the back-channel communication file,
BCI_comm.csv, should look something like:

Protocol,DDR5,
numDFEtaps,4,
numFFEtaps,3,
DFEtaps,0.01000,-0.00500,-0.01000,-0.00500,
FFEtaps,0.00000,0.85000,-0.15000,
Sequence,176,
State,Converged,
EyeHeight,0.610993,

Open the back-channel communication log file, BCI_comm_log.csv, in a spreadsheet editor. Each row
in the log file shows the Sequence number, which model wrote to the file (Tx or Rx), the current
Sample Count, BCI_State and calculated Eye Height. The last 7 columns in the log show the current
FFE and DFE taps values being simulated. Observe how the Eye Height changes as each value is
swept, and the parameter value that gives the largest Eye Height is set after each iteration. Note that
the value of FFE0 is always computed from the values of FFE-1 and FFE1.

Generate DDR5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant DDR5 model executables, IBIS and AMI files.

Open the SerDes IBIS-AMI Manager.

Export Models

On the Export tab in the SerDes IBIS-AMI Manager dialog box:

• Update the Tx model name to ddr5_bc_tx.
• Update the Rx model name to ddr5_bc_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog

model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create

model executables that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 50000 to allow enough time for training to complete

during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

7 Industry Standard IBIS-AMI Models

7-108

• Set the IBIS file name to be ddr5_bc_txrx.ibs
• Jitter can be added if desired on the AMI-Tx and AMI-Rx tabs.
• Press the Export button to generate models in the Target directory.

Update AMI files (if Desired)

The Tx and Rx AMI files generated by SerDes Toolbox are compliant to the IBIS 6.1 specification, so
all back-channel specific parameters have been placed in the Model_Specific section of the file.

The BCI_State_ST parameter has 5 states required for complete back-channel training, however to
make these models more user-friendly the end user only really needs 2 states: "Off" and "Training".
To make this change, update the BCI_State_ST parameter in each AMI file as follows:

• Change (List 1 2 3 4 5) to (List 1 2).
• Change (List_Tip "Off" "Training" "Converged" "Failed" "Error") to (List_Tip "Off"

"Training").
• Note that this will not affect the operation of the model, only to the parameter values visible to the

user.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

Model Limitations

When simulating with these models in an industry standard AMI model simulator, keep the following
limitations in mind:

• It is intended that these models will be run as a "matched set" or with other AMI models that have
been generated using SerDes Toolbox.

• These models will not work with AMI models generated outside of SerDes Toolbox. Specifically,
any model that uses the IBIS standard BCI_* keywords.

• BCI_Protocol is not supported. These models have been hard coded to a Protocol named
"DDRx_Write".

• BCI_ID is not supported. These models have been hard coded to a BCI_ID named "bci_comm",
which means that each simulation must be run in a separate directory to avoid filename collisions
during simulation.

• Back-channel training must be enabled on both models for training to be enabled. This is done by
setting the BCI_State_ST parameters to "Training".

• These models must be run with a block size of 1024 for proper operation.
• These models will operate correctly with any UI or Samples Per Bit values.

References
[1] IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7_0.pdf.

[2] JEDEC website, https://www.jedec.org/.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

7-109

https://ibis.org/ver7.0/ver7_0.pdf
https://www.jedec.org/

See Also
FFE | PassThrough | VGA | DFECDR | SerDes Designer

More About
• “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-50
• “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-38
• “Managing AMI Parameters” on page 6-2

External Websites
• https://www.sisoft.com/support/

7 Industry Standard IBIS-AMI Models

7-110

https://www.sisoft.com/support/

ADC IBIS-AMI Model Based on COM

This example shows how to create IEEE 802.3ck specification ADC-based transmitter and receiver
IBIS-AMI models using library blocks in the SerDes Toolbox™ library and custom blocks to model a
time-agnostic ADC. The generated models conform to the IBIS-AMI standard. The virtual sampling
node, which exists in slicer-based SerDes systems, but does not exist in ADC-based SerDes systems,
is emulated to allow for virtual eye diagram generation in the Simulink® and IBIS-AMI simulators for
evaluating the channel.

SerDes IBIS-AMI Model Setup Using MATLAB Script

This example uses a MATLAB® script to first construct a SerDes System representing the transmitter
and receiver of an ADC architecture and then export to a SerDes Simulink model. Type this command
in the MATLAB command window to run the script:

buildSerDesADC

A SerDes System is configured with the following attributes before being exported to Simulink. Note
that custom blocks will function as pass-throughs until the Simulink customizations discussed later in
the example are applied.

Configuration Setup

• Symbol Time is set to 18.8235ps, since the maximum allowable 802.3ck operating data-rate is
106.25Gb/s.

• Target BER is set to 1e-4.
• Samples per Symbol is set to 32.
• Modulation is set to PAM4.
• Signaling is set to Differential.

Transmitter Model Setup

• The Tx FFE block is set up for 3 pre-tap and 1 post-tap by including 5 tap weights.
• The Tx VGA block is used to control the launch amplitude.
• The Tx AnalogOut model is set up so that Voltage is 1V, Rise time is 6.161ps, R (output

resistance) is 50 Ohms, and C (capacitance) is 5fF according to the 802.3ck specification.

Channel Model Setup

• Channel loss is set to 15dB.
• Target Frequency is set to the Nyquist frequency.
• Differential impedance is kept at default 100 Ohms.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 50 Ohms and C (capacitance) is 5
fF according to the 802.3ck specification.

• The Noise custom block injects Gaussian noise to time domain waveform.
• A cascade of 3 Rx CTLE blocks is set up for 7, 21, and 1 configurations respectively. The GPZ

(Gain Pole Zero) matrix data for each is derived from the transfer function given in the 802.3ck
behavioral CTLE specification.

 ADC IBIS-AMI Model Based on COM

7-111

• The Rx VGA custom block applies adapted gain.
• The Saturating Amplifier block applies memoryless non-linearity.
• The ADC custom block quantizes the time domain signal.
• The Rx FFE custom has 21 taps (3-pre and 17-postcursor taps) whose weights will be

automatically computed during the Rx global adaptation.
• The Rx DFECDR block is set up for one DFE taps. The DFE tap is limited to be +/- 0.5V amplitude.

ADC-Based SerDes Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the script and customizes it as
required for an ADC-based SerDes in Simulink.

Review Simulink Model Setup

The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks.

Push inside the Tx subsystem.

Push inside the Rx subsystem.

7 Industry Standard IBIS-AMI Models

7-112

Customize the Model for ADC-Based SerDes

The model exported from the SerDes App needs to be first customized to represent an ADC-based
SerDes Rx by customizing additional Rx blocks and modifying the Rx Init block code.

Configure Input Referred Rx Noise Block

Noise in the Rx subsystem can be modelled at the output, or at the input. An input referred noise
source is shaped by the subsequent equalization stages (CTLE & FFE), and hence better reflects the
how noise is shaped by the real system. On the other hand, output referred noise is not shaped, and
does not capture how changing the settings on the CTLE and FFE impact noise.

• Descend into the Pass-Through block named Noise by clicking on the down arrow on block.
• Point the existing system object to the Noise.m system object in the example directory. See

“Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28.

• In the system object mask, configure Symbol Time, Sample Interval, and Modulation with the
system variables.

 ADC IBIS-AMI Model Based on COM

7-113

• Create an IBIS-AMI parameter in the IBIS-AMI Manager for the Noise block named NoisePSD
using the pictured attributes. The value 8.2e-9 comes from the COM standard. See “Managing
AMI Parameters” on page 6-2.

7 Industry Standard IBIS-AMI Models

7-114

• Connect the generated constant block to Noise input port.

 ADC IBIS-AMI Model Based on COM

7-115

Configure VGA Block

• Descend into the Pass-Through block named VGA.
• Point the existing system object to the serdes.VGA system object included in SerDes Toolbox.
• In the system object mask, turn off the Mode Port to force the block to be on.

• Create an IBIS-AMI parameter in the IBIS-AMI Manager for the VGA block named Gain using the
pictured attributes.

7 Industry Standard IBIS-AMI Models

7-116

• Connect generated data store read to Gain input port. Delete data store write as it will be unused
because the value is only updated in Init and not time domain.

 ADC IBIS-AMI Model Based on COM

7-117

VGA Adaptation

VGA adaptation is straightforward, the required gain is calculated in Init as the ratio of a target pulse
amplitude versus the maximum peak value of the input pulse response. Yet, the required VGA gain
may be different for different CTLE settings, hence the VGA gain will need to be evaluated at each
iteration of the general algorithm described previously.

Configure ADC Block

The ADC model used is a time-agnostic ADC, meaning that each point in the simulation is quantized,
rather than just at the sampling instant. However, the DFE and clock recovery will still only use ADC
samples at the sampling instant. A time-agnostic ADC allows for the generation of an equivalent
waveform as seen at the DFE summing node: allowing for the construction of a signal eye diagram
with a representative height and width.

• Descend into the Pass-Through block named ADC
• Point the existing system object to the ADC.m system object in the example directory.
• In the system object mask, configure Symbol Time, Sample Interval, and Modulation with the

system variables.

7 Industry Standard IBIS-AMI Models

7-118

Configure Rx FFE

• Descend into the Pass-Through block named Rx_FFE
• Point the existing system object to the serdes.FFE system object included in SerDes Toolbox.
• In the main tab of the system object mask, turn off the Mode Port and turn off Normalize Taps. In

the advanced tab, configure Symbol Time and Sample Interval with the system variables.

 ADC IBIS-AMI Model Based on COM

7-119

• Create a tap structure in the IBIS-AMI Manager for the Rx_FFE block with 3 pre-cursor taps, 17
post cursor taps, and the pictured attributes.

[zeros(1,3) 1 zeros(1,17)]

• Connect generated data store read to Tap Weights input port. Delete data store write as it will be
unused.

FFE Adaptation

The Rx FFE operates on ADC sampled data, rather than on a continuous waveform. However, during
statistical adaptation, it is assumed that all of the waveform points, even in between data samples,
are available. The Rx FFE is only adapted in the custom user Init code; adaptation is assisted by the
adaptFFE function provided. The Rx FFE adaptation goal is to drive the output pulse response, given
an input pulse response, such that the pre and post cursor data samples are driven to zero. This does
not mean that the pulse response will be zero other than at the cursor point. Rather, much like a sync
waveform, the ISI is only driven to zero at the data sample points.

As the Rx FFE operates on sampled data, the first step in the adaptation process, in adaptFFE, is to
assume a data sampling phase for the input pulse response. The approach used is greedy to assume
that we can force sampling so that the cursor lands on the peak of the incoming pulse response.

As the Rx FFE, in the Rx subsystem, is followed by a 1-tap DFE, the Rx FFE does not need to zero
force the 1st post cursor. Rather, the Rx FFE needs to ensure that the 1st post-cursor falls within the

7 Industry Standard IBIS-AMI Models

7-120

equalization range of the 1-tap DFE. Note, that if a post Rx DFE is not used, then the goal would be to
zero-force all pre- and post-cursor ISI.

Given the now sampled input pulse response, the goal is to find a filter response that drives the pre-
and post-cursor data samples to zero, or in the case of the 1st post cursor sample into the range of
the DFE. This optimization problem is very closely related to solving a set of linear equations, where
we need to find a matrix inverse. This matrix that needs to be inverted is a matrix made up of the
circularly shifted input sampled pulse response. This inverted matrix then multiplied by the desired
output target pulse response: [0, 0, 0, 1, bmax, 0, 0…] for the case of a 3-tap precursor Rx FFE,
where the 1 denotes the cursor position and bmax denotes the maximum range of the DFE. The
required Rx FFE FIR filter coefficients are the product of the inverted, circularly shifted input pulse-
response matrix and the desired output pulse response.

DFECDR Adaptation

DFECDR adaptation follows Rx FFE adaptation. The DFECDR is the standard block in the SerDes
toolbox, please refer to the online documentation for the DFECDR block.

This example uses an Alexander (bang-bang) phase detector, rather than a baud-rate phase detector
that is typically used in ADC-based SerDes systems. This modelling choice simplifies the example, as
a baud-rate phase detector would interact with the adaptation convergence. The ADC-based SerDes
systems need to contend with the interaction between CDR lock point and Rx FFE & DFE adaptation.

Customize Rx Subsystem Init Code Block

In this example, the Rx subsystem adaptation is performed in the statistical domain: involving the co-
adaptation of the CTLE, FFE, and DFE to achieve the best possible BER given the channel and Tx
FFE settings used. The optimized settings for CTLE and FFE will remain fixed during time-domain
simulations, while the DFE and CDR continue to adapt during the time-domain simulation.

 ADC IBIS-AMI Model Based on COM

7-121

Modify the custom user code area of Init with the code provided with the example. See “Globally
Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance” on page
4-27.

• Click Refresh Init on the Init mask dialog to update code based on previous steps.
• Click Show Init on the Init mask dialog to open the Init code.
• Copy the code in adcInitCustomUserCode.m within the example directory.

edit adcInitCustomUserCode.m

• Paste the copied code just before the end of the custom user code area. Ensure that the AMI
parameters at the top of the custom user area are retained. Do not modify code beyond the end of
the custom user area.

Statistical Adaptation Algorithm

The statistical adaptation algorithm processes the impulse response though each of the Rx subsystem
blocks, and measures the resulting impulse response figure of merit. As this is an ADC-based system,
the figure of merit used is signal-to-noise (SNR), where the noise term also includes residual pre- and
post-cursor ISI.

In general, statistical Rx adaptation will proceed as follows:

• An initial CTLE setting is selected
• A VGA setting is chosen such that the pulse amplitude falls within target bounds
• The Rx FFE is automatically adjusted so that ISI at data sample points is minimized.
• The DFE is adapted to remove post-cursor ISI.
• SNR at data sample points is evaluated.
• Steps above are repeated for each possible CTLE setting, keeping track of SNR values for each

setting. The setting with the highest SNR is chosen as the global adaptation point.

7 Industry Standard IBIS-AMI Models

7-122

Run The Simulink Model

• Visit the Stimulus block mask dialog and change number of symbols to 4000.
• Visit the export tab of the IBIS-AMI Manager and update the Rx ignore bits to 2000. This and the

previous modification will ensure that the time domain adaptation has ample time to converge. A
larger number of symbols and ignore time will yield more realistic results.

• Run the model to simulate the ADC-based SerDes system.

 ADC IBIS-AMI Model Based on COM

7-123

7 Industry Standard IBIS-AMI Models

7-124

Update the ADC Quantization

In the example the ADC quantization is set to 6b, by default. Try changing the ADC quantization to a
lower amount, observe how the time-domain eye shape is affected by reduced ADC precision.

Generate ADC-Based SerDes IBIS-AMI Model

The final part of this example takes the customized ADC-based SerDes Simulink model and then
generates an IBIS-AMI compliant model: including model executables, IBIS and AMI files.

The current IBIS AMI standard does not have native support for ADC-based SerDes. The current
standard is written for slicer-based SerDes, which contain a signal node wherein the equalized signal
waveform is observed. In a slicer-based SerDes this node exists inside the DFE, right before the
decision sampler. A continuous analog waveform is observable at that node, which includes the effect
of all the upstream equalizers (such as CTLE) and the equalization due to DFE, as tap weighted and
fed back prior decisions. Such a summing node does not exist in an ADC-based SerDes, due to the
ADC in the system. In a real ADC-based SerDes system the ADC proves a vertical slice though the eye
at the sampling instant. To emulate a virtual node, a time-agnostic ADC is used. This ADC quantizes
each point in the incoming analog waveform at the simulation time-step rate: i.e. 1/fB/SPS, where
SPS is the number of samples per symbol, and fB is the baud-rate. The Rx FFE also processes the
input signal as a continuous waveform, rather than as samples. However, the Rx FFE applies a single
tap values for SPS-simulation time-steps. The DFE is the stock DFE from the SerDes Toolbox and is
written for slicer based SerDes. This signal chain allows for the signal integrity simulator to be able
to observe a virtual eye in an ADC-based system.

Export IBIS-AMI Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

• Set the Tx model Bits to ignore value to 5 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 20,000 to allow sufficient time for the Rx DFE taps to

settle during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

• Press the Export button to generate models in the Target directory.

See Also
FFE | CTLE | DFECDR | VGA | SaturatingAmplifier

More About
• “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-27
• “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-28
• “Managing AMI Parameters” on page 6-2

External Websites
• Best Practices for Modeling PAM4 SerDes Systems and Improving IBIS-AMI Correlation

 ADC IBIS-AMI Model Based on COM

7-125

https://www.mathworks.com/videos/best-practices-for-modeling-serdes-systems-and-improving-ibis-ami-correlation-1584081394974.html

• https://www.sisoft.com/support/

7 Industry Standard IBIS-AMI Models

7-126

https://www.sisoft.com/support/

Architectural 112G PAM4 ADC-Based SerDes Model

This example shows how to use a IEEE 802.3ck specification transmitter and receiver architectural
model using library blocks in the SerDes Toolbox™ library and custom blocks to model a 112G PAM4
time-interleaved ADC-Based SerDes. The performance impact of the timing mismatch between the
time-interleaved ADCs is explored as an example of a design trade-off study. The aspects of the model
which are compatible with the IBIS-AMI 7.0 standard are used to create an IBIS-AMI model.

Overview

There are many trade-offs to be explored when designing an ADC-based SerDes. Some of these
design trade-offs and resulting questions are summarized below:

ADC Exploration

• What type of ADC will be used in this design? Flash, binary/multibit search, or SAR (successive
approximation register)?

• What ADC time-interleave factor should be used? What is the impact on system performance
caused by mismatches of the timing, gain, voltage offset and/or bandwidth between parallel ADCs
and explore mismatch calibration algorithms?

• What full-scale range should be used?
• What resolution/quantization/number of bits is required?
• Should the quantization be uniform or non-uniform?
• What is the performance impact of quantization noise?

Digital Equalization Exploration

• What number of FFE taps is required to achieve needed performance?
• How many DFE taps can be implemented?
• What DSP resolution is required?
• What impact does frame size or parallelism of digital processing have on system latency. What

demultiplexer width should be used?

Clock Recovery

• What bandwidth of CDR is required? How should the loop filter be specified?
• Which Mueller-muller cost function is best for the application?

Analog Front End

• How many CTLE stages are needed?
• How does the CTLE amplified noise impact system performance?
• How to scale signals in order to take advantage of the linear range of the ADC?

This example focuses on determining the impact of the time-interleaved timing mismatch between
parallel ADCs. The model can be the basis of exploring many other design trade-offs. The system SNR
(signal-to-noise ratio) is compared between cases with and without a 4% symbol time timing offset
and shows that this impairment reduces the system performance by about 2.5 dB.

 Architectural 112G PAM4 ADC-Based SerDes Model

7-127

Rx Model Description

The receiver model is composed of an analog front-end (AFE) with CTLE and amplifier blocks. The
time-interleaved ADC is further parallelized by a demultiplexer before DSP processing by the FFE
and DFE. The baud-rate CDR controls the VCO which drives the ADC. The system performance is
quantified by a SNR metric as well as an output waveform. This model is summarized in the following
diagram where the time-interleave depth (or the number of ADC's) is four and the demux size is 64.

Open the Simulink® model ArchitecturalADCBasesSerDes.slx attached with this example.

The receiver analog front-end partially equalizes the waveform and is very similar to the “ADC IBIS-
AMI Model Based on COM” on page 7-111. Here the first block injects the input referred noise,
followed by the mid-band zero CTLE, main CTLE, and noise filter CTLE blocks as specified by channel
operating margin (COM) of IEEE 802.3ck. The VGA scales the signal to match the full scale range of
the ADC and the Saturating Amplifier block enforces a memoryless-nonlinearity.

7 Industry Standard IBIS-AMI Models

7-128

ADC Subsystem

The ADC subsystem is composed of custom ADC, Demux, RxFFE, DFE, Phase Detector, Loop Filter,
and VCO System object™ blocks. Additionally, the IBIS-Bridge and IBIS-AMI clock_times blocks
facilitate the conversion of the model to an IBIS-AMI model.

A time-interleaved ADC is utilized to reduce the maximum speed and latency requirements of a full-
rate ADC. The diagram below shows how four time-interleaved ADCs can take turns sampling the
data signal.

The sampled signals are demuxed or framed to reduce the signaling rate before processing with the
DSP equalization. The diagram below illustrates how a demux width of 8 frames slows down and
parallelizes the data. The model itself is parameterized to use a demux of 64 but 8 are shown below
for illustration purposes only.

 Architectural 112G PAM4 ADC-Based SerDes Model

7-129

Next a 21 tap FFE is applied to the parallelized signal and is then followed by the single tap DFE and
data decision. The baud-rate phase detector utilizes a type A Mueller-Muller phase detector that aims
to balance the ISI of the first pre- and post-cursor samples as illustrated below:

7 Industry Standard IBIS-AMI Models

7-130

The phase detector output is processed with the loop filter which in turn drives the voltage controlled
oscillator (VCO) or the heart-beat of the system. This VCO drives the other blocks and closes the
system loop.

SNR Calculation

For ADC-based serdes the eye diagram is not as information rich as it is for analog SerDes. Instead
signal-to-noise (SNR) calculations and vertical eye slices are more useful insight into the system
performance.

The DFE block calculates the SNR as follows:

SNR = 10 log10
μ2

σ2

 Architectural 112G PAM4 ADC-Based SerDes Model

7-131

where μ is the signal strength and σ is the noise strength. If y i represents the discrete equalized
sampled voltages, then for NRZ the signal and noise strengths are defined as,

μ = 1
N ∑i = 1

N
|y i |

σ2 = 1
N ∑i = 1

N
|y i | − μ 2

For PAM4, the signal and noise are defined in terms of the middle and outer sampled symbol voltages.

μ1 = 1
N1
∑

i = 1

N1
|y i middle|

μ2 = 1
N2
∑

i = 1

N2
|y i outer|

μ2 =
μ1

2 + μ2
2

2

η1 i = y i middle− μ1

η2 i = y i outer− μ2

σ 2 = 1
N1 + N2

∑
i

η1 i 2 + η2 i 2

The vertical eye slice shows the clustering of the four PAM4 symbols.

7 Industry Standard IBIS-AMI Models

7-132

FFE and DFE Equalization Adaptation

Very similar to the process used in the “ADC IBIS-AMI Model Based on COM” on page 7-111 example,
the FFE and DFE tap adaptation is performed in AMI Init at time 0 with impulse-response based

 Architectural 112G PAM4 ADC-Based SerDes Model

7-133

analysis in the initialize subsystem. These optimized tap values are then passed to the Simulink
equalization blocks and are utilized throughout the simulation.

Impact of Timing Mismatch

If the phases of the several clocks that drive the time-interleaved ADCs are not equally spaced from
each other, then system performance degradation occurs. While much of this timing mismatch can be
calibrated out, it is important to understand the performance impact of this impairment. The RxClock
or the VCO block has a parameter called the Max Timing Mismatch (UI). This parameter injects a
phase offset between the first and second clocks. While this is a simplistic model of actual system
behavior, it is sufficient to illustrate the impact.

If you have not done so yet, open the Simulink model ArchitecturalADCBasesSerDes.slx
attached with this example.

Run the model and observe the baseline behavior. When the simulation completes, the Simulation
Data Inspector automatically loads up the logged signals.

Double click on the Rx Clock/VCO block and change the timing mismatch to be 0.04 and re-run the
model. The resulting SNR for the two runs can be compared as follows. This illustrates how a small
4% timing mismatch can reduce the system performance by about 2.5 dB.

7 Industry Standard IBIS-AMI Models

7-134

Generate ADC-Based SerDes IBIS-AMI Model

The final part of this example takes the customized ADC-based SerDes Simulink model and then
generates an IBIS-AMI compliant model including model executables, IBIS, and AMI files.

The current IBIS AMI standard does not have native support for ADC-based SerDes. The current
standard is written for slicer-based SerDes, which contain a signal node wherein the equalized signal
waveform is observed. In a slicer-based SerDes this node exists inside the DFE, right before the
decision sampler. A continuous analog waveform is observable at that node, which includes the effect
of all the upstream equalizers (such as CTLE) and the equalization due to DFE, as tap weighted and
fed back prior decisions. Such a summing node does not exist in an ADC-based SerDes, due to the
ADC in the system. In a real ADC-based SerDes system the ADC proves a vertical slice though the eye
at the sampling instant. To emulate a virtual node, the IBIS-AMI Bridge block reassembles the
discrete equalized samples according to the time interleave factor and the demux size. A single
equalized sample is held constant for the entire IBIS-AMI waveform symbol time.

Export IBIS-AMI Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

• Set the Tx model Bits to ignore value to 5 since there are three taps in the Tx FFE.

 Architectural 112G PAM4 ADC-Based SerDes Model

7-135

• Set the Rx model Bits to ignore value to 20,000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

• Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

• Press the Export button to generate models in the Target directory.

Explore Further

The number of ADCs and the Demux width in the model is parameterized by the MATLAB workspace
variables timeInterleaveDepth and DemuxSize. They are set in the model PreLoadFcn callback
and can be changed to other positive integers as part of further exploration. The system objects in the
ADC subsystem can be modified to explore many of the design tradeoff questions identified at the
first of the example.

References

[1] S. Kiran, S. Cai, Y. Zhu, S. Hoyos and S. Palermo, "Digital Equalization With ADC-Based Receivers:
Two Important Roles Played by Digital Signal Processingin Designing Analog-to-Digital-Converter-
Based Wireline Communication Receivers," in IEEE Microwave Magazine, vol. 20, no. 5, pp. 62-79,
May 2019, doi: 10.1109/MMM.2019.2898025.

7 Industry Standard IBIS-AMI Models

7-136

Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes
Receiver Model

This example demonstrates the use of an architecturally representative 100G dual-summing-node-
DFE PAM4 SerDes receiver model using the library blocks from the SerDes Toolbox™ library and
custom blocks. The more representative data path allows for a more accurate modeling of the
adaptation of the clock phase, DFE tap weights and PAM4 threshold voltages. This example shows the
necessity of managing the adaptive loop update factors to ensure that the numerous adaptive loops
don't fight against each other.

Example Overview

Historically, SerDes have been designed using a single summing node for DFE tap feedback. Due to
decreasing design margins, the increasing difficulty in meeting timing requirements, and difficulty of
routing high-speed clocks, this architectural topology has fundamental limits. An alternative topology
uses two summing nodes, rather than one, each to process every other incoming symbol to ease
timing margins and to reduce clock speeds at the expense of circuit complexity and area [1]. This
example of architecturally representative dual-summing-node-DFE PAM4 receiver model provides
access to realize differences between summing node offsets, bandwidths and timing. The use of
modular blocks for the DFE, adaptation engine, phase detector, loop filter and VCO allows for the
collaboration between multiple teams and with the advantages of utilizing block interfaces for
correlation and verification activities. The representative data path allows for a representative
adaptation engine model and the exploration between interactions of the adaptation loops for the
clock phase, DFE tap weights and PAM4 threshold voltages.

Model Overview

Open the model by opening DualSummingNodeSerdes.slx file.

The receiver (Rx) model contains the same analog front end, CTLE, VGA and memory-less non-
linearity blocks, as the COM reference receiver detailed in the “ADC IBIS-AMI Model Based on COM”
on page 7-111 example and “Architectural 112G PAM4 ADC-Based SerDes Model” on page 7-127
example.

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-137

The last block in the receiver contains the dual-summing-node DFE and the clock recovery units.

Dual Summing Node Description

The dual summing node DFE architecture relaxes the timing requirements by breaking the data path
into two branches ("odd" and "even" in this example) that sample and apply digital-feedback-
equalization (DFE) to every other data symbol. The partially equalized input signal, w_in, is fed to the

7 Industry Standard IBIS-AMI Models

7-138

even and odd summing nodes. The previous data decisions are appropriately weighted by the DFE tap
weights and subtracted from the input signal to generate the even and odd summing node outputs,
"w_out_even" and "w_out_odd", to further equalize the signal.

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-139

7 Industry Standard IBIS-AMI Models

7-140

The odd and even branches have their own set of PAM4 data samplers, auxiliary samplers (used to
determine the PAM4 data sampler threshold voltages and DFE tap adaptation) and edge samplers
(used in the Bang-Bang phase detection and clock recovery). These binary samplers can determine
whether the input signal is above or below the sampler's threshold voltage. The auxiliary samplers
levels (AUX +1, AUX +1/3, AUX -1/3 and AUX -1) or signal constellation levels will adapt to the
observed signal constellation voltages depending on the observed samples. The ideal odd (yellow and
red X's) and even (green and black X's) sampler positions (in time and voltage) of a PAM4 eye
diagram are:

Observe the two eyes in each eye diagram of the odd and even summing node waveform outputs.
Note that one eye is sharp and one is blurry illustrating that every other eye in each branch is a
"don't care" state and allows for the relaxed timing constraint. The IBIS-AMI standard assumes a

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-141

single-summing node model so to make the dual-summing node model IBIS-AMI compliant, the odd
and even waveforms are mux'ed together to create a virtual single-node output waveform.

Adaptive Behavior

With the data path accurately represented, the adaptive behavior of the system can be modeled in
detail and utilized for in-depth studies of loop dynamics. The model contains three adaptive loops, 1)
clock phase recovery, 2) voltage reference threshold estimation for the samplers, and 3) DFE tap
weights. It is critical that the loops converge in the order of clock phase, then voltage references,
then DFE taps for optimal performance as shown. The common bang-bang clock phase detector is
utilized to determine if the edge samples are early or late. This signal is accumulated and smoothed
by the loop filter which in turn drives the voltage-controlled oscillator (VCO), providing the half-rate
clocks throughout the model.

7 Industry Standard IBIS-AMI Models

7-142

Both the DFE tap weight and reference voltage thresholds are estimated with the sign-sign least-
mean-square (SS-LMS) algorithm. An LMS algorithm works by observing an input signal and an error
signal. By assuming that the system noise is a combination of both random noise and systematic
noise, the LMS algorithm searches for this correlated systematic noise between the input and error
signal. For the DFE tap estimation, the systematic noise is the channel's residual inter-symbol-
interference (ISI) due to loss and reflections and for the reference voltage threshold estimation, the
systematic noise is the offset between data and auxiliary samplers. These adaptive filters continually
update their weight estimates proportionally to the detected correlation. The sign-sign LMS
algorithm is utilized in this model since the output of the signal samplers is binary.

As the DFE tap weight adaptation is simplest to explain it is addressed first, followed by the voltage
threshold adaptation. For clock recovery adaptation, see “Model Clock Recovery Loops in SerDes
Toolbox” on page 4-52

DFE Tap Weight Adaptation

The 4 tap DFE estimates and compensates for the residual channel ISI. This architectural model is
unique in that the LMS algorithm is implemented in both the analog domain, when the DFE taps are
applied to the signal and the digital domain when the DFE taps are updated with the LMS Update
block. The governing equation for the tap weight update is given below.

Wk n = Wk n− 1 + μ D n− k ⋅ Em n ⋅ D n = = m

Where

• Wk n is the tap weight at time sample index n for the kth tap weight (1, 2, 3 or 4).

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-143

• μ is the adaptation step-size.
• D n is the data symbol value, having the values of -1, -1/3, 1/3 or 1 for PAM4.
• Em n is the sign of the error, -1 or 1.
• m is the signal constellation level, having the values of -1, -1/3, 1/3 or 1 for PAM4.

This portion of the model is shown below followed by the view of the 4 tap weights adapting over the
course of a simulation.

7 Industry Standard IBIS-AMI Models

7-144

Voltage Threshold Adaptation

The signal constellation reference voltages for the auxiliary samplers are estimated with a sign-sign
LMS algorithm and used to derive the PAM4 data sampler voltage thresholds. Conceptually, when the
reference voltage for the auxiliary samplers are converged to the signal constellation values, the
auxiliary samplers will on average return an equal number of logic high and low outputs. If the
auxiliary reference voltage differs significantly from the signal constellation value, then the average
of the output of the sampler will be biased. This correlated bias is used by the LMS algorithm to push
the auxiliary reference voltage to converge to the signal constellation voltage. The average value of
the adjacent signal constellation voltage estimates is used to derive the data sampler thresholds. The
governing equation for the voltage threshold adaption is given below:

VAUXm n = VAUXm n− 1 + μ ⋅ 1 ⋅ Em n ⋅ D n = = m

Where,

• VAUXm n is the auxiliary sample reference voltage for symbol m.

• Em n is the sign of the error (-1 or 1)
• μ is the adaption step size
• n is the sample index
• m is the constellation level

This portion of the model is shown below followed by an example of the startup adaptation of the
voltage threshold of the auxiliary samplers ("vth_aux") and the voltage threshold of the data samplers
("vth_data").

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-145

7 Industry Standard IBIS-AMI Models

7-146

Experiment with Adaptation Loop Convergence

For optimal system performance, it is critical that the adaptive loops converge in the reliable
sequence of clock phase first, voltage reference second and DFE tap weights third. The clock phase
convergence time is controlled by the loop filter block parameters, up/down counter limit and step
size for phase increment/decrement. The DFE tap weight adaptation is controlled by the MATLAB
workspace variable, "muTaps", which is referenced as the adaptation update step size in the LMS
Update block. The voltage threshold adaptation is controlled by the MATLAB workspace varible,
"muThresholds" which is also referenced as the adaptation update step size in its LMS Update
block. These μ terms control how much weight to give the adaptation update value versus the existing
value. Large values of μ will result in faster convergence time but larger steady-state variation and
smaller values of μ will take longer to converge but have smaller steady-state variation. The
determination of what values of μ to use for each adaptation loop at the various stages of system
operation (startup vs maintenance) is a topic of serious architectural investigation.

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-147

The base line behavior of the system with muTaps = 2−18 and muThresholds= 2−12 is:

If the adaptive loops update is reversed where the DFE tap weights are allowed to converge before
the voltage references then unstable behavior is observed. Below is the behavior of the system with
muTaps = 2−10 and muThresholds = 2−16. The updated responses as shown in light blue. Observe
how the DFE tap weights vary widely until the voltage thresholds converge. This underscores the
need to correctly model and control the numerous adaptive loops in a system.

7 Industry Standard IBIS-AMI Models

7-148

Export to IBIS-AMI and Serial Link Designer

As this model was created within the SerDes Toolbox IBIS-AMI workflow, it is ready to export to AMI
and simulated in the Serial Link Designer app.

Conclusion

Due to decreasing design margins, the increasing difficulty in meeting timing requirements, and
difficulty of routing high-speed clocks, a single summing node architectural topology has fundamental
limits. This example shows an architecturally representative dual-summing-node-DFE PAM4 receiver
model which provides access to realize differences between summing node offsets, bandwidths and
timing. The use of modular blocks for the DFE, adaptation engine, phase detector, loop filter and VCO
allows for the collaboration between multiple teams and with the advantages of utilizing block
interfaces for correlation and verification activities. The representative data path allows for a
representative adaptation engine model and the exploration between interactions of the adaptation
loops for the clock phase, DFE tap weights and PAM4 threshold voltages.

 Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

7-149

References

[1] S. Ibrahim and B. Razavi, "Low-Power CMOS Equalizer Design for 20-Gb/s Systems," in IEEE
Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1321-1336, June 2011, doi: 10.1109/
JSSC.2011.2134450.

7 Industry Standard IBIS-AMI Models

7-150

	Design and Simulate SerDes System Topics
	Fundamentals of SerDes Systems
	Clock and Data Recovery in SerDes System
	Phase Detector
	Recovering Clock Signal

	Analog Channel Loss in SerDes System
	Loss Model from Channel Loss Metric
	Loss Model from Impulse Response
	Introducing Cross Talk

	Manage Contents of IBIS and AMI files
	Contents of IBIS File
	Contents of AMI File
	Customize AMI Parameters
	Define Clock Position in Statistical Eye
	PAMn Capabilities
	Debug AMI Files in EDA

	Statistical Analysis in SerDes Systems
	Init Subsystem Workflow
	SerDes System Using Init Subsystem
	PAMn Thresholds
	Advance Init Options
	Metrics Used in Statistical Analysis

	Jitter Analysis in SerDes Systems
	Linux Version Compatibilities

	Customize SerDes Systems Topics
	Customize SerDes System in MATLAB

	Create and Customize IBIS-AMI Models Topics
	SiSoft Link
	SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software
	Signal Integrity Link

	Design and Simulate SerDes Systems Examples
	Find Zeros, Poles, and Gains for CTLE from Transfer Function
	Convert Scattering Parameter to Impulse Response for SerDes System
	Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance
	Globally Adapt Receiver Components in Time Domain
	Model Clock Recovery Loops in SerDes Toolbox

	Customize SerDes Systems
	Customizing SerDes Toolbox Datapath Control Signals
	Customizing Datapath Building Blocks
	Implement Custom CTLE in SerDes Toolbox PassThrough Block
	Step Response Based CTLE

	Customize IBIS-AMI Models
	Managing AMI Parameters
	Design IBIS-AMI Models to Support Clock Forwarding
	Design IBIS-AMI Models to Support DC Offset
	Simulate Crosstalk Cancellation in IBIS AMI Receiver Models

	Industry Standard IBIS-AMI Models
	PCIe4 Transmitter/Receiver IBIS-AMI Model
	PCIe5 Transmitter/Receiver IBIS-AMI Model
	DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model
	DDR5 Controller Transmitter/Receiver IBIS-AMI Model
	CEI-56G-LR Transmitter/Receiver IBIS-AMI Model
	USB 3.1 Transmitter/Receiver IBIS-AMI Model
	Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training
	ADC IBIS-AMI Model Based on COM
	Architectural 112G PAM4 ADC-Based SerDes Model
	Architectural 100G Dual-Summing-Node-DFE PAM4 SerDes Receiver Model

